Search results
Results from the WOW.Com Content Network
Simplifying this further gives us the solution x = −3. It is easily checked that none of the zeros of x (x + 1)(x + 2) – namely x = 0, x = −1, and x = −2 – is a solution of the final equation, so no spurious solutions were introduced.
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.
Simplification is the process of replacing a mathematical expression by an equivalent one that is simpler (usually shorter), according to a well-founded ordering. Examples include:
Because (a + 1) 2 = a, a + 1 is the unique solution of the quadratic equation x 2 + a = 0. On the other hand, the polynomial x 2 + ax + 1 is irreducible over F 4, but it splits over F 16, where it has the two roots ab and ab + a, where b is a root of x 2 + x + a in F 16. This is a special case of Artin–Schreier theory.
Using Cartesian coordinates in three dimensions, let x = (x, y, z) T, and let A be a symmetric 3-by-3 matrix. Then the geometric nature of the solution set of the equation x T Ax + b T x = 1 depends on the eigenvalues of the matrix A. If all eigenvalues of A are non-zero, then the solution set is an ellipsoid or a hyperboloid.
More generally, there is a hypersurface in M(2,R) of hyperbolic units, any one of which serves in a basis to represent the split-complex numbers as a subring of M(2,R). [3] [better source needed] The number = + can be represented by the matrix + .
Since taking the square root is the same as raising to the power 1 / 2 , the following is also an algebraic expression: 1 − x 2 1 + x 2 {\displaystyle {\sqrt {\frac {1-x^{2}}{1+x^{2}}}}} An algebraic equation is an equation involving polynomials , for which algebraic expressions may be solutions .