enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Boundary layer - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer

    Since the static pressure is independent of , then pressure at the edge of the boundary layer is the pressure throughout the boundary layer at a given streamwise position. The external pressure may be obtained through an application of Bernoulli's equation .

  3. Flow separation - Wikipedia

    en.wikipedia.org/wiki/Flow_separation

    In fluid dynamics, flow separation or boundary layer separation is the detachment of a boundary layer from a surface into a wake. [1] A boundary layer exists whenever there is relative movement between a fluid and a solid surface with viscous forces present in the layer of fluid close to the surface. The flow can be externally, around a body ...

  4. Boundary layer thickness - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer_thickness

    The boundary layer thickness, , is the distance normal to the wall to a point where the flow velocity has essentially reached the 'asymptotic' velocity, .Prior to the development of the Moment Method, the lack of an obvious method of defining the boundary layer thickness led much of the flow community in the later half of the 1900s to adopt the location , denoted as and given by

  5. Static pressure - Wikipedia

    en.wikipedia.org/wiki/Static_pressure

    At least one author takes a different approach in order to avoid a need for the expression freestream static pressure. Gracey has written "The static pressure is the atmospheric pressure at the flight level of the aircraft". [15] [16] Gracey then refers to the air pressure at any point close to the aircraft as the local static pressure.

  6. Thermal boundary layer thickness and shape - Wikipedia

    en.wikipedia.org/wiki/Thermal_boundary_layer...

    This turbulent boundary layer thickness formula assumes 1) the flow is turbulent right from the start of the boundary layer and 2) the turbulent boundary layer behaves in a geometrically similar manner (i.e. the velocity profiles are geometrically similar along the flow in the x-direction, differing only by stretching factors in and (,) [5 ...

  7. Adverse pressure gradient - Wikipedia

    en.wikipedia.org/wiki/Adverse_pressure_gradient

    Turbulent boundary layers tend to be able to sustain an adverse pressure gradient better than an equivalent laminar boundary layer. The more efficient mixing which occurs in a turbulent boundary layer transports kinetic energy from the edge of the boundary layer to the low- momentum flow at the solid surface, often preventing the separation ...

  8. Laminar flow - Wikipedia

    en.wikipedia.org/wiki/Laminar_flow

    The boundary layer is a very thin sheet of air lying over the surface of the wing (and all other surfaces of the aircraft). Because air has viscosity, this layer of air tends to adhere to the wing. As the wing moves forward through the air, the boundary layer at first flows smoothly over the streamlined shape of the airfoil. Here, the flow is ...

  9. Falkner–Skan boundary layer - Wikipedia

    en.wikipedia.org/wiki/Falkner–Skan_boundary_layer

    The basis of the Falkner-Skan approach are the Prandtl boundary layer equations. Ludwig Prandtl [2] simplified the equations for fluid flowing along a wall (wedge) by dividing the flow into two areas: one close to the wall dominated by viscosity, and one outside this near-wall boundary layer region where viscosity can be neglected without significant effects on the solution.