enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    This definition of a multiplicities by deformation was sufficient until the end of the 19th century, but has several problems that led to more convenient modern definitions: Deformations are difficult to manipulate; for example, in the case of a root of a univariate polynomial, for proving that the multiplicity obtained by deformation equals ...

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    The linear combinations of the m i solutions (except the one which gives the zero vector) are the eigenvectors associated with the eigenvalue λ i. The integer m i is termed the geometric multiplicity of λ i. It is important to keep in mind that the algebraic multiplicity n i and geometric multiplicity m i may or may not be equal, but we ...

  4. Resolution of singularities - Wikipedia

    en.wikipedia.org/wiki/Resolution_of_singularities

    Let X be the subvariety of the four-dimensional affine plane, with coordinates x,y,z,w, generated by y 2-x 3 and x 4 +xz 2-w 3. The canonical desingularization of the ideal with these generators would blow up the center C 0 given by x=y=z=w=0. The transform of the ideal in the x-chart if generated by x-y 2 and y 2 (y 2 +z 2-w 3).

  5. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. [3]

  6. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    If f is a function that is meromorphic on the whole Riemann sphere, then it has a finite number of zeros and poles, and the sum of the orders of its poles equals the sum of the orders of its zeros. Every rational function is meromorphic on the whole Riemann sphere, and, in this case, the sum of orders of the zeros or of the poles is the maximum ...

  7. Minimal polynomial (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minimal_polynomial_(linear...

    T 3 ⋅ e 1 = −4T 2 ⋅ e 1 − T ⋅ e 1 + e 1, so that: μ T, e 1 = X 3 + 4X 2 + X − I. This is in fact also the minimal polynomial μ T and the characteristic polynomial χ T : indeed μ T, e 1 divides μ T which divides χ T, and since the first and last are of degree 3 and all are monic, they must all be the same.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Perron–Frobenius theorem - Wikipedia

    en.wikipedia.org/wiki/Perron–Frobenius_theorem

    Let = be an positive matrix: > for ,.Then the following statements hold. There is a positive real number r, called the Perron root or the Perron–Frobenius eigenvalue (also called the leading eigenvalue, principal eigenvalue or dominant eigenvalue), such that r is an eigenvalue of A and any other eigenvalue λ (possibly complex) in absolute value is strictly smaller than r, |λ| < r.