Search results
Results from the WOW.Com Content Network
The table above gives properties of the vapor–liquid equilibrium of anhydrous ammonia at various temperatures. The second column is vapor pressure in kPa. The third column is the density of the liquid phase. The fourth column is the density of the vapor. The fifth column is the heat of vaporization needed to convert one gram of liquid to vapor.
Ammonia solutions decrease in density as the concentration of dissolved ammonia increases. At 15.6 °C (60.1 °F), the density of a saturated solution is 0.88 g/ml; it contains 35.6% ammonia by mass, 308 grams of ammonia per litre of solution, and has a molarity of approximately 18 mol /L.
A standard laboratory solution of 28% ammonia. The hazards of ammonia solutions depend on the concentration: 'dilute' ammonia solutions are usually 5–10% by weight (< 5.62 mol/L); 'concentrated' solutions are usually prepared at >25% by weight. A 25% (by weight) solution has a density of 0.907 g/cm 3, and a solution that has a
Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...
Concentrated ammonia and hydrochloric acid solutions are added to two gas-washing bottles, respectively. Using rubber pumps, air (acting as gas-carrier) is injected in the gas-washing tubes causing the streams of ammonia and hydrogen chloride in air to collide and react giving the solid product, ammonium chloride.
The following table lists the Van der Waals constants (from the Van der Waals equation) for a number of common gases and volatile liquids. [ 1 ] To convert from L 2 b a r / m o l 2 {\displaystyle \mathrm {L^{2}bar/mol^{2}} } to L 2 k P a / m o l 2 {\displaystyle \mathrm {L^{2}kPa/mol^{2}} } , multiply by 100.
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.
Energy densities table Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency % Arbitrary Antimatter: 89,875,517,874: depends on density: Deuterium–tritium fusion: 576,000,000 [1] Uranium-235 fissile isotope: 144,000,000 [1] 1,500,000,000