Search results
Results from the WOW.Com Content Network
First PDF version of the Opensource Handbook of Nanoscience and Nanotechnology. Contains only the sections that are more than 25% finished. Please acknowledge the Opensource Handbook of Nanoscience and Nanotechnology if you use this material. The images also appears on the Commons/nanotechnology page
Three dimensional molecular model of an all-carbon tubular fullerene.. This is a list of notable computer programs that are used to model nanostructures at the levels of classical mechanics [1] and quantum mechanics.
Nanotechnology's ability to observe and control the material world at a nanoscopic level can offer great potential for construction development. Nanotechnology can help improve the strength and durability of construction materials, including cement, steel, wood, and glass. [9] By applying nanotechnology, materials can gain a range of new ...
As nanotechnology advances, many studies have been conducted to determine the effects nanoengineered materials can have on the environment. [22] Most textiles can lose up to 20% of their mass during their lifetime, so nanoparticles used in production of nanofabrics are at risk of being released into the air and waterways.
Nanoelectronics – use of nanotechnology on electronic components, including transistors so small that inter-atomic interactions and quantum mechanical properties need to be studied extensively. Nanomechanics – branch of nanoscience studying fundamental mechanical (elastic, thermal and kinetic) properties of physical systems at the nanometer ...
Other projects involve embedding clothing with biometric sensors to relay information regarding the user's health and vitals, [27] which would be useful for monitoring soldiers in combat. Surprisingly, some of the most challenging aspects in creating nanosensors for defense and military use are political in nature, rather than technical.
Nanotechnology is a promise for making the "smart home" a reality. Nanotech-enabled sensors can monitor temperature, humidity, and airborne toxins, which needs nanotech-based improved batteries. The building components will be intelligent and interactive since the sensor uses wireless components, it can collect the wide range of data.
A technology roadmap project, led by the Battelle Memorial Institute and hosted by several U.S. National Laboratories has explored a range of atomically precise fabrication technologies, including both early-generation and longer-term prospects for programmable molecular assembly; the report was released in December, 2007. [1]