Search results
Results from the WOW.Com Content Network
The rotary solenoid is an electromechanical device used to rotate a ratcheting mechanism when power is applied. These were used in the 1950s for rotary snap-switch automation in electromechanical controls. Repeated actuation of the rotary solenoid advances the snap-switch forward one position.
Solenoid valves are the most frequently used control elements in fluidics. Their tasks are to shut off, release, dose, distribute or mix fluids. They are found in many application areas. Solenoids offer fast and safe switching, high-reliability, long service life, good medium compatibility of the materials used, low control power and compact ...
A 3-port solenoid-type boost controller A 4-port solenoid-type boost controller (used for a dual-port wastegate). The purpose of a boost controller is to reduce the boost pressure seen by the wastegate's reference port, in order to trick the wastegate into allowing higher boost pressures than it was designed for.
The controlled part of the injector is a solenoid-operated spill valve. Normally, it is open, allowing the fuel to return to the supply line when the pump plunger descends. When the solenoid is energized, the spill valve closes, and the fuel is forced through the spray tip into the cylinder. The four phases of EUI operation are: Fill phase
In a solenoid-operated safety shutoff valve, a spring action closes the valve instantly when an electric current fails and the solenoid ceases to be energized. The solenoid circuit is generally arranged so that it is broken upon failure of any element of the system. This valve cannot be re-opened until the solenoid is again energized.
A camless or free-valve piston engine is an engine that has poppet valves operated by means of electromagnetic, hydraulic, or pneumatic [1] actuators instead of conventional cams. Actuators can be used to both open and close valves, or to open valves closed by springs or other means.
A finite solenoid is a solenoid with finite length. Continuous means that the solenoid is not formed by discrete coils but by a sheet of conductive material. We assume the current is uniformly distributed on the surface of the solenoid, with a surface current density K ; in cylindrical coordinates : K → = I l ϕ ^ . {\displaystyle {\vec {K ...
How it works "The MultiAir system is elegantly simple. An electrohydraulic actuator, a high-response, electronically activated solenoid—controls the pressure applied to hydraulic fluid (engine oil drawn from the sump) that fills a thin passageway that connects the intake valves and the camshaft.