Search results
Results from the WOW.Com Content Network
The Sherwood number (Sh) (also called the mass transfer Nusselt number) is a dimensionless number used in mass-transfer operation. It represents the ratio of the total mass transfer rate (convection + diffusion) to the rate of diffusive mass transport, [1] and is named in honor of Thomas Kilgore Sherwood. It is defined as follows
This rate can be quantified through the calculation and application of mass transfer coefficients for an overall process. These mass transfer coefficients are typically published in terms of dimensionless numbers, often including Péclet numbers, Reynolds numbers, Sherwood numbers, and Schmidt numbers, among others. [2] [3] [4]
mass transfer (advection– ... Sherwood number: Sh = mass transfer (forced convection; ratio of convective to diffusive mass transport) Sommerfeld number: S = () ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Sherwood number – (also called the mass transfer Nusselt number) is a dimensionless number used in mass-transfer operation. It represents the ratio of the convective mass transfer to the rate of diffusive mass transport.
The same restrictions described in the heat transfer definition are applied to the mass transfer definition. The Sherwood number can be used to find an overall mass transfer coefficient and applied to Fick's law of diffusion to find concentration profiles and mass transfer fluxes.
This process is called Stefan ... is the Spalding mass transfer number; ... The droplet vaporization rate can be expressed as a function of the Sherwood number.
Meanwhile, for mass transfer, the comparison is between viscous diffusivity and mass Diffusivity (), given by the Schmidt number. In some cases direct analytic solutions can be found from these equations for the Nusselt and Sherwood numbers.