enow.com Web Search

  1. Ad

    related to: hilbert space of functions pdf worksheet 2 page 1

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    This mapping defined on simple tensors extends to a linear identification between H 1 ⊗ H 2 and the space of finite rank operators from H ∗ 1 to H 2. This extends to a linear isometry of the Hilbertian tensor product H 1 ^ H 2 with the Hilbert space HS(H ∗ 1, H 2) of Hilbert–Schmidt operators from H ∗ 1 to H 2.

  3. Kirszbraun theorem - Wikipedia

    en.wikipedia.org/wiki/Kirszbraun_theorem

    The version for Hilbert spaces can for example be found in (Schwartz 1969, p. 21). [2] If H 1 is a separable space (in particular, if it is a Euclidean space) the result is true in Zermelo–Fraenkel set theory; for the fully general case, it appears to need some form of the axiom of choice; the Boolean prime ideal theorem is known to be ...

  4. Bergman kernel - Wikipedia

    en.wikipedia.org/wiki/Bergman_kernel

    where H(D) is the space of holomorphic functions in D. Then L 2,h (D) is a Hilbert space: it is a closed linear subspace of L 2 (D), and therefore complete in its own right. This follows from the fundamental estimate, that for a holomorphic square-integrable function ƒ in D

  5. Fundamental theorem of Hilbert spaces - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The sesquilinear form B : H × H → is separately uniformly continuous in each of its two arguments and hence can be extended to a separately continuous sesquilinear form on the completion of H; if H is Hausdorff then this completion is a Hilbert space. [1] A Hausdorff pre-Hilbert space that is complete is called a Hilbert space.

  6. Reproducing kernel Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Reproducing_kernel_Hilbert...

    Let be an arbitrary set and a Hilbert space of real-valued functions on , equipped with pointwise addition and pointwise scalar multiplication.The evaluation functional over the Hilbert space of functions is a linear functional that evaluates each function at a point ,

  7. Rigged Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Rigged_Hilbert_space

    A rigged Hilbert space is a pair (H, Φ) with H a Hilbert space, Φ a dense subspace, such that Φ is given a topological vector space structure for which the inclusion map i is continuous. Identifying H with its dual space H * , the adjoint to i is the map i ∗ : H = H ∗ → Φ ∗ . {\displaystyle i^{*}:H=H^{*}\to \Phi ^{*}.}

  8. Direct integral - Wikipedia

    en.wikipedia.org/wiki/Direct_integral

    The simplest example of a direct integral are the L 2 spaces associated to a (σ-finite) countably additive measure μ on a measurable space X. Somewhat more generally one can consider a separable Hilbert space H and the space of square-integrable H-valued functions (,).

  9. Compact operator on Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Compact_operator_on...

    In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators (representable by finite-dimensional matrices) in the topology induced by the operator norm.

  1. Ad

    related to: hilbert space of functions pdf worksheet 2 page 1