Search results
Results from the WOW.Com Content Network
A Bergman space is an example of a reproducing kernel Hilbert space, which is a Hilbert space of functions along with a kernel K(ζ, z) that verifies a reproducing property analogous to this one. The Hardy space H 2 ( D ) also admits a reproducing kernel, known as the Szegő kernel . [ 37 ]
The version for Hilbert spaces can for example be found in (Schwartz 1969, p. 21). [2] If H 1 is a separable space (in particular, if it is a Euclidean space) the result is true in Zermelo–Fraenkel set theory; for the fully general case, it appears to need some form of the axiom of choice; the Boolean prime ideal theorem is known to be ...
where H(D) is the space of holomorphic functions in D. Then L 2,h (D) is a Hilbert space: it is a closed linear subspace of L 2 (D), and therefore complete in its own right. This follows from the fundamental estimate, that for a holomorphic square-integrable function ƒ in D
The Hilbert series of an algebra or a module is a special case of the Hilbert–Poincaré series of a graded vector space. The Hilbert polynomial and Hilbert series are important in computational algebraic geometry, as they are the easiest known way for computing the dimension and the degree of an algebraic variety defined by explicit ...
The sesquilinear form B : H × H → is separately uniformly continuous in each of its two arguments and hence can be extended to a separately continuous sesquilinear form on the completion of H; if H is Hausdorff then this completion is a Hilbert space. [1] A Hausdorff pre-Hilbert space that is complete is called a Hilbert space.
A rigged Hilbert space is a pair (H, Φ) with H a Hilbert space, Φ a dense subspace, such that Φ is given a topological vector space structure for which the inclusion map i is continuous. Identifying H with its dual space H * , the adjoint to i is the map i ∗ : H = H ∗ → Φ ∗ . {\displaystyle i^{*}:H=H^{*}\to \Phi ^{*}.}
Let be an arbitrary set and a Hilbert space of real-valued functions on , equipped with pointwise addition and pointwise scalar multiplication.The evaluation functional over the Hilbert space of functions is a linear functional that evaluates each function at a point ,
In mathematics, and in particular in the field of algebra, a Hilbert–Poincaré series (also known under the name Hilbert series), named after David Hilbert and Henri Poincaré, is an adaptation of the notion of dimension to the context of graded algebraic structures (where the dimension of the entire structure is often infinite).