enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Continuous uniform distribution - Wikipedia

    en.wikipedia.org/wiki/Continuous_uniform...

    For a random variable following the continuous uniform distribution, the expected value is = +, and the variance is = (). For the special case a = − b , {\displaystyle a=-b,} the probability density function of the continuous uniform distribution is:

  3. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    Indeed, even when the random variable does not have a density, the characteristic function may be seen as the Fourier transform of the measure corresponding to the random variable. Another related concept is the representation of probability distributions as elements of a reproducing kernel Hilbert space via the kernel embedding of distributions .

  4. Random variable - Wikipedia

    en.wikipedia.org/wiki/Random_variable

    A mixed random variable is a random variable whose cumulative distribution function is neither discrete nor everywhere-continuous. [10] It can be realized as a mixture of a discrete random variable and a continuous random variable; in which case the CDF will be the weighted average of the CDFs of the component variables. [10]

  5. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    An absolutely continuous random variable is a random variable whose probability distribution is absolutely continuous. There are many examples of absolutely continuous probability distributions: normal , uniform , chi-squared , and others .

  6. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    A chart showing a uniform distribution. In probability theory and statistics, a collection of random variables is independent and identically distributed (i.i.d., iid, or IID) if each random variable has the same probability distribution as the others and all are mutually independent. [1]

  7. Probability integral transform - Wikipedia

    en.wikipedia.org/wiki/Probability_integral_transform

    In probability theory, the probability integral transform (also known as universality of the uniform) relates to the result that data values that are modeled as being random variables from any given continuous distribution can be converted to random variables having a standard uniform distribution. [1]

  8. Location–scale family - Wikipedia

    en.wikipedia.org/wiki/Location–scale_family

    If is a continuous random variable with probability density function () , then = + is a ... Uniform distribution (continuous) Uniform distribution (discrete)

  9. Uniform integrability - Wikipedia

    en.wikipedia.org/wiki/Uniform_integrability

    In the theory of probability, Definition A or the statement of Theorem 1 are often presented as definitions of uniform integrability using the notation expectation of random variables., [5] [6] [7] that is, 1. A class of random variables is called uniformly integrable if: