Search results
Results from the WOW.Com Content Network
Welded aluminium alloy bicycle frame, made in the 1990s. An aluminium alloy (UK/IUPAC) or aluminum alloy (NA; see spelling differences) is an alloy in which aluminium (Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese, silicon, tin, nickel and zinc.
7000 series alloys such as 7075 are often used in transport applications due to their high specific strength, including marine, automotive and aviation. [ 7 ] [ 13 ] These same properties lead to its use in rock climbing equipment, bicycle components, inline-skating-frames and hang glider airframes are commonly made from 7075 aluminium alloy.
2024 aluminium alloy is an aluminium alloy, with copper as the primary alloying element. It is used in applications requiring high strength-to-weight ratio, as well as good fatigue resistance. It is weldable only through friction welding , and has average machinability .
Aluminium–silicon alloys or Silumin is a general name for a group of lightweight, high-strength aluminium alloys based on an aluminum–silicon system (AlSi) that consist predominantly of aluminum - with silicon as the quantitatively most important alloying element.
AlSi10Mg-0403 alloy is a specific type of AlSi10Mg that comprises aluminium alloyed with silicon of mass fraction up to 10%, small quantities of magnesium and iron, along with other minor elements. The presence of silicon makes the alloy both harder and stronger than pure aluminium due to the formation of Mg 2 Si precipitate. [1]
The AlMgSi alloys are therefore understood in the standards as a separate group (6000 series) and not as a subgroup of aluminum-magnesium alloys that cannot be hardenable. AlMgSi is one of the aluminum alloys with medium to high strength, high fracture resistance, good welding suitability, corrosion resistance and formability. They can be ...
7068 alloy is a 7000 series aluminium-zinc alloy registered with the US Aluminium Association and produced to AMS 4331 (chemical composition and mechanical properties) and AMS 2772 (heat treatment). 7068 alloy ‘A’ and ‘B’ tensile data and fatigue properties have been ratified for inclusion in MIL Handbook 5 / MMPDS.
An added benefit of scandium additions to aluminum is that the nanoscale Al 3 Sc precipitates that give the alloy its strength are coarsening resistant at relatively high temperatures (~350 °C). This is in contrast to typical commercial 2xxx and 6xxx alloys, which quickly lose their strength at temperatures above 250 °C due to the rapid ...