Search results
Results from the WOW.Com Content Network
Symmetric-key encryption: the same key is used for both encryption and decryption. Symmetric-key algorithms [a] are algorithms for cryptography that use the same cryptographic keys for both the encryption of plaintext and the decryption of ciphertext. The keys may be identical, or there may be a simple transformation to go between the two keys. [1]
Blowfish is a symmetric-key block cipher, designed in 1993 by Bruce Schneier and included in many cipher suites and encryption products. Blowfish provides a good encryption rate in software, and no effective cryptanalysis of it has been found to date for smaller files.
In cryptography, RC2 (also known as ARC2) is a symmetric-key block cipher designed by Ron Rivest in 1987. "RC" stands for "Ron's Code" or "Rivest Cipher"; other ciphers designed by Rivest include RC4, RC5, and RC6.
In cryptography, Camellia is a symmetric key block cipher with a block size of 128 bits and key sizes of 128, 192 and 256 bits. It was jointly developed by Mitsubishi Electric and NTT of Japan . The cipher has been approved for use by the ISO/IEC , the European Union 's NESSIE project and the Japanese CRYPTREC project.
Stream ciphers represent a different approach to symmetric encryption from block ciphers. Block ciphers operate on large blocks of digits with a fixed, unvarying transformation. This distinction is not always clear-cut: in some modes of operation, a block cipher primitive is used in such a way that it acts effectively as a stream cipher. Stream ...
The RC algorithms are a set of symmetric-key encryption algorithms invented by Ron Rivest. The "RC" may stand for either Rivest's cipher or, more informally, Ron's code. [1] Despite the similarity in their names, the algorithms are for the most part unrelated. There have been six RC algorithms so far: RC1 was never published.
According to the New York Times, here's exactly how to play Strands: Find theme words to fill the board. Theme words stay highlighted in blue when found.
The encryption and decryption routines can be specified in a few lines of code. The key schedule, however, is more complex, expanding the key using an essentially one-way function with the binary expansions of both e and the golden ratio as sources of "nothing up my sleeve numbers". The tantalising simplicity of the algorithm together with the ...