enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    There is a direct correspondence between n-by-n square matrices and linear transformations from an n-dimensional vector space into itself, given any basis of the vector space. Hence, in a finite-dimensional vector space, it is equivalent to define eigenvalues and eigenvectors using either the language of matrices , or the language of linear ...

  3. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    This solution of the vibrating drum problem is, at any point in time, an eigenfunction of the Laplace operator on a disk.. In mathematics, an eigenfunction of a linear operator D defined on some function space is any non-zero function in that space that, when acted upon by D, is only multiplied by some scaling factor called an eigenvalue.

  4. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    Spectral graph theory relates properties of a graph to a spectrum, i.e., eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix. Imbalanced weights may undesirably affect the matrix spectrum, leading to the need of normalization — a column/row scaling of the matrix entries ...

  5. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  6. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    The decomposition can be derived from the fundamental property of eigenvectors: = = =. The linearly independent eigenvectors q i with nonzero eigenvalues form a basis (not necessarily orthonormal) for all possible products Ax, for x ∈ C n, which is the same as the image (or range) of the corresponding matrix transformation, and also the ...

  7. Generalized eigenvector - Wikipedia

    en.wikipedia.org/wiki/Generalized_eigenvector

    This basis can be used to determine an "almost diagonal matrix" in Jordan normal form, similar to , which is useful in computing certain matrix functions of . [9] The matrix J {\displaystyle J} is also useful in solving the system of linear differential equations x ′ = A x , {\displaystyle \mathbf {x} '=A\mathbf {x} ,} where A {\displaystyle ...

  8. Spectral graph theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_graph_theory

    The 1980 monograph Spectra of Graphs [16] by Cvetković, Doob, and Sachs summarised nearly all research to date in the area. In 1988 it was updated by the survey Recent Results in the Theory of Graph Spectra. [17] The 3rd edition of Spectra of Graphs (1995) contains a summary of the further recent contributions to the subject. [15]

  9. Laplace–Beltrami operator - Wikipedia

    en.wikipedia.org/wiki/Laplace–Beltrami_operator

    For any twice-differentiable real-valued function f defined on Euclidean space R n, the Laplace operator (also known as the Laplacian) takes f to the divergence of its gradient vector field, which is the sum of the n pure second derivatives of f with respect to each vector of an orthonormal basis for R n.