enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Capsule neural network - Wikipedia

    en.wikipedia.org/wiki/Capsule_neural_network

    A second, digit capsule layer has one 16-dimensional capsule for each digit (0-9). Dynamic routing connects (only) primary and digit capsule layers. A [32x6x6] x 10 weight matrix controls the mapping between layers. [1] Capsnets are hierarchical, in that each lower-level capsule contributes significantly to only one higher-level capsule. [1]

  3. Instance-based learning - Wikipedia

    en.wikipedia.org/wiki/Instance-based_learning

    One advantage that instance-based learning has over other methods of machine learning is its ability to adapt its model to previously unseen data. Instance-based learners may simply store a new instance or throw an old instance away. Examples of instance-based learning algorithms are the k-nearest neighbors algorithm, kernel machines and RBF ...

  4. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    "Keras 3 is a full rewrite of Keras [and can be used] as a low-level cross-framework language to develop custom components such as layers, models, or metrics that can be used in native workflows in JAX, TensorFlow, or PyTorch — with one codebase." [2] Keras 3 will be the default Keras version for TensorFlow 2.16 onwards, but Keras 2 can still ...

  5. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]

  6. Recursive neural network - Wikipedia

    en.wikipedia.org/wiki/Recursive_neural_network

    A recursive neural network is a kind of deep neural network created by applying the same set of weights recursively over a structured input, to produce a structured prediction over variable-size input structures, or a scalar prediction on it, by traversing a given structure in topological order.

  7. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    This is because deep learning models are able to learn the style of an artist or musician from huge datasets and generate completely new artworks and music compositions. For instance, DALL-E is a deep neural network trained on 650 million pairs of images and texts across the internet that can create artworks based on text entered by the user. [246]

  8. Multiple instance learning - Wikipedia

    en.wikipedia.org/wiki/Multiple_Instance_Learning

    Keeler et al., [2] in his work in the early 1990s was the first one to explore the area of MIL. The actual term multi-instance learning was introduced in the middle of the 1990s, by Dietterich et al. while they were investigating the problem of drug activity prediction. [3]

  9. Statistical learning theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_learning_theory

    In machine learning problems, a major problem that arises is that of overfitting. Because learning is a prediction problem, the goal is not to find a function that most closely fits the (previously observed) data, but to find one that will most accurately predict output from future input.