Search results
Results from the WOW.Com Content Network
Interaction energy of an argon dimer.The long-range section is due to London dispersion forces. London dispersion forces (LDF, also known as dispersion forces, London forces, instantaneous dipole–induced dipole forces, fluctuating induced dipole bonds [1] or loosely as van der Waals forces) are a type of intermolecular force acting between atoms and molecules that are normally electrically ...
The size of the induced dipole moment is equal to the product of the strength of the external field and the dipole polarizability of ρ. Dipole moment values can be obtained from measurement of the dielectric constant. Some typical gas phase values given with the unit debye are: [7] carbon dioxide: 0; carbon monoxide: 0.112 D; ozone: 0.53 D
The induced dipole forces appear from the induction (also termed polarization), which is the attractive interaction between a permanent multipole on one molecule with an induced (by the former di/multi-pole) 31 on another. [12] [13] [14] This interaction is called the Debye force, named after Peter J. W. Debye. One example of an induction ...
The Lennard-Jones potential is often used as an approximate model for the isotropic part of a total (repulsion plus attraction) van der Waals force as a function of distance. Van der Waals forces are responsible for certain cases of pressure broadening (van der Waals broadening) of spectral lines and the formation of van der Waals molecules.
The polarizability of an atom or molecule is defined as the ratio of its induced dipole moment to the local electric field; in a crystalline solid, one considers the dipole moment per unit cell. [1] Note that the local electric field seen by a molecule is generally different from the macroscopic electric field that would be measured externally.
A dipole-induced dipole interaction (Debye force) is due to the approach of a molecule with a permanent dipole to another non-polar molecule with no permanent dipole. This approach causes the electrons of the non-polar molecule to be polarized toward or away from the dipole (or "induce" a dipole) of the approaching molecule. [13]
The Axilrod–Teller potential in molecular physics, is a three-body potential that results from a third-order perturbation correction to the attractive London dispersion interactions (instantaneous induced dipole-induced dipole)
This temporary dipole induces a dipole in particles nearby. The temporary dipole and the induced dipoles are then attracted to each other. This is known as van der Waals force, and is always present (unless the refractive indexes of the dispersed and continuous phases are matched), is short-range, and is attractive.