Search results
Results from the WOW.Com Content Network
Equivalent unbalanced and balanced networks. The impedance of the series elements in the balanced version is half the corresponding impedance of the unbalanced version. Fig. 3. To be balanced, a network must have the same impedance in each "leg" of the circuit. A 3-terminal network can also be used as a 2-port.
By choosing the base quantities in this manner, the transformer can be effectively removed from the circuit as described above. For example: Take a transformer that is rated at 10 kVA and 240/100 V. The secondary side has an impedance equal to 1∠0° Ω. The base impedance on the secondary side is equal to:
To match the impedances, both cables must be connected to a matching transformer with a turns ratio of 2:1. In this example, the 300-ohm line is connected to the transformer side with more turns; the 75-ohm cable is connected to the transformer side with fewer turns. The formula for calculating the transformer turns ratio for this example is:
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
The quarter wave transformer is an alternative to a stub; but, whereas a stub is terminated in a short (or open) circuit and the length is chosen so as to produce the required impedance transformation, the λ/4 transformer is in series with the load and its length and characteristic impedance are designed to produce the required impedance ...
The input impedance of an infinite line is equal to the characteristic impedance since the transmitted wave is never reflected back from the end. Equivalently: The characteristic impedance of a line is that impedance which, when terminating an arbitrary length of line at its output, produces an input impedance of equal value. This is so because ...
For instance, one might transform a voltage generator into a current generator using Norton's theorem in order to be able to later combine the internal resistance of the generator with a parallel impedance load. A resistive circuit is a circuit containing only resistors, ideal current sources, and ideal voltage sources. If the sources are ...
A nonideal linear two-winding transformer can be represented by two mutual inductance-coupled circuit loops linking the transformer's five impedance constants as shown in Fig. 2. [6] [16] [17] [18] Fig. 2 Nonideal transformer circuit diagram. where M is mutual inductance