Search results
Results from the WOW.Com Content Network
The direct sum is also commutative up to isomorphism, i.e. for any algebraic structures and of the same kind. The direct sum of finitely many abelian groups, vector spaces, or modules is canonically isomorphic to the corresponding direct product. This is false, however, for some algebraic objects, like nonabelian groups.
A given direct sum decomposition of into complementary subspaces still specifies a projection, and vice versa. If X {\displaystyle X} is the direct sum X = U ⊕ V {\displaystyle X=U\oplus V} , then the operator defined by P ( u + v ) = u {\displaystyle P(u+v)=u} is still a projection with range U {\displaystyle U} and kernel V {\displaystyle V} .
The subspace V × {0} of V ⊕ W is isomorphic to V and is often identified with V; similarly for {0} × W and W. (See internal direct sum below.) With this identification, every element of V ⊕ W can be written in one and only one way as the sum of an element of V and an element of W. The dimension of V ⊕ W is equal to the sum of the ...
Determining whether a given subspace W is invariant under T is ostensibly a problem of geometric nature. Matrix representation allows one to phrase this problem algebraically. Write V as the direct sum W ⊕ W′; a suitable W′ can always be chosen by extending a basis of W. The associated projection operator P onto W has matrix representation
The group operation in the external direct sum is pointwise multiplication, as in the usual direct product. This subset does indeed form a group, and for a finite set of groups {H i} the external direct sum is equal to the direct product. If G = ΣH i, then G is isomorphic to Σ E {H i}. Thus, in a sense, the direct sum is an "internal ...
If V is the direct sum of its weight spaces V = ⨁ λ ∈ h ∗ V λ {\displaystyle V=\bigoplus _{\lambda \in {\mathfrak {h}}^{*}}V_{\lambda }} then V is called a weight module ; this corresponds to there being a common eigenbasis (a basis of simultaneous eigenvectors) for all the represented elements of the algebra, i.e., to there being ...
In fact, every x ∈ H can then be written uniquely as x = v + w, with v ∈ V and w ∈ V ⊥. Therefore, H is the internal Hilbert direct sum of V and V ⊥. The linear operator P V : H → H that maps x to v is called the orthogonal projection onto V.
For a given vector and plane, the sum of projection and rejection is equal to the original vector. Similarly, for inner product spaces with more than three dimensions, the notions of projection onto a vector and rejection from a vector can be generalized to the notions of projection onto a hyperplane, and rejection from a hyperplane.