enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Implicit function theorem - Wikipedia

    en.wikipedia.org/wiki/Implicit_function_theorem

    The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).

  3. Implicit function - Wikipedia

    en.wikipedia.org/wiki/Implicit_function

    An implicit function is a function that is defined by an implicit equation, that relates one of the variables, considered as the value of the function, with the others considered as the arguments. [ 1 ] : 204–206 For example, the equation x 2 + y 2 − 1 = 0 {\displaystyle x^{2}+y^{2}-1=0} of the unit circle defines y as an implicit function ...

  4. Lyapunov–Schmidt reduction - Wikipedia

    en.wikipedia.org/wiki/Lyapunov–Schmidt_reduction

    For the case when the linear operator (,) is invertible, the implicit function theorem assures that there exists a solution () satisfying the equation ((),) = at least locally close to . In the opposite case, when the linear operator f x ( x , λ ) {\displaystyle f_{x}(x,\lambda )} is non-invertible, the Lyapunov–Schmidt reduction can be ...

  5. Category:Theorems in calculus - Wikipedia

    en.wikipedia.org/wiki/Category:Theorems_in_calculus

    Implicit function theorem; Increment theorem; Integral of inverse functions; Integration by parts; Integration using Euler's formula; Intermediate value theorem; Inverse function rule; Inverse function theorem

  6. Gauss's lemma (Riemannian geometry) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(Riemannian...

    By the implicit function theorem, is a diffeomorphism on a neighborhood of . The Gauss Lemma now tells that exp p {\displaystyle \exp _{p}} is also a radial isometry. The exponential map is a radial isometry

  7. Function of several real variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several_real...

    The implicit function theorem of more than two real variables deals with the continuity and differentiability of the function, as follows. [4] Let ϕ(x 1, x 2, …, x n) be a continuous function with continuous first order partial derivatives, and let ϕ evaluated at a point (a, b) = (a 1, a 2, …, a n, b) be zero:

  8. Implicit curve - Wikipedia

    en.wikipedia.org/wiki/Implicit_curve

    The implicit function theorem describes conditions under which an equation (,) = can be solved implicitly for x and/or y – that is, under which one can validly write = or = (). This theorem is the key for the computation of essential geometric features of the curve: tangents , normals , and curvature .

  9. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    For simple roots, this results immediately from the implicit function theorem. This is true also for multiple roots, but some care is needed for the proof. A small change of coefficients may induce a dramatic change of the roots, including the change of a real root into a complex root with a rather large imaginary part (see Wilkinson's polynomial).