Search results
Results from the WOW.Com Content Network
Hermitian matrices also appear in techniques like singular value decomposition (SVD) and eigenvalue decomposition. In statistics and machine learning, Hermitian matrices are used in covariance matrices, where they represent the relationships between different variables. The positive definiteness of a Hermitian covariance matrix ensures the well ...
In mathematics, Sylvester’s criterion is a necessary and sufficient criterion to determine whether a Hermitian matrix is positive-definite. Sylvester's criterion states that a n × n Hermitian matrix M is positive-definite if and only if all the following matrices have a positive determinant: the upper left 1-by-1 corner of M,
In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...
The Cholesky decomposition of a Hermitian positive-definite matrix A, is a decomposition of the form =, where L is a lower triangular matrix with real and positive diagonal entries, and L * denotes the conjugate transpose of L. Every Hermitian positive-definite matrix (and thus also every real-valued symmetric positive-definite matrix) has a ...
Even if is not square, the two matrices and are both Hermitian and in fact positive semi-definite matrices. The conjugate transpose "adjoint" matrix A H {\displaystyle \mathbf {A} ^{\mathrm {H} }} should not be confused with the adjugate , adj ( A ) {\displaystyle \operatorname {adj} (\mathbf {A} )} , which is also sometimes called adjoint .
Let denote the space of Hermitian matrices, + denote the set consisting of positive semi-definite Hermitian matrices and + + denote the set of positive definite Hermitian matrices. For operators on an infinite dimensional Hilbert space we require that they be trace class and self-adjoint , in which case similar definitions apply, but we discuss ...
A positive semidefinite matrix A can also have many matrices B such that =. However, A always has precisely one square root B that is both positive semidefinite and symmetric. In particular, since B is required to be symmetric, B = B T {\displaystyle B=B^{\textsf {T}}} , so the two conditions A = B B {\displaystyle A=BB} or A = B T B ...
Applicable to: square, hermitian, positive definite matrix Decomposition: =, where is upper triangular with real positive diagonal entries Comment: if the matrix is Hermitian and positive semi-definite, then it has a decomposition of the form = if the diagonal entries of are allowed to be zero