Search results
Results from the WOW.Com Content Network
Stereographic projection is conformal, meaning that it preserves the angles at which curves cross each other (see figures). On the other hand, stereographic projection does not preserve area; in general, the area of a region of the sphere does not equal the area of its projection onto the plane. The area element is given in (X, Y) coordinates by
The stereographic projection, also known as the planisphere projection or the azimuthal conformal projection, is a conformal map projection whose use dates back to antiquity. Like the orthographic projection and gnomonic projection, the stereographic projection is an azimuthal projection, and when on a sphere, also a perspective projection.
The stereographic projection maps the -sphere onto -space with a single adjoined point at infinity; under the metric thereby defined, {} is a model for the -sphere. In the more general setting of topology , any topological space that is homeomorphic to the unit n {\displaystyle n} -sphere is called an n ...
Stereographic projection of a 3-sphere (again removing the north pole) maps to three-space in the same manner. (Notice that, since stereographic projection is conformal, round spheres are sent to round spheres or to planes.) A somewhat different way to think of the one-point compactification is via the exponential map. Returning to our picture ...
The stereographic projection, which is conformal, can be constructed by using the tangent point's antipode as the point of perspective. r(d) = c tan d / 2R ; the scale is c/(2R cos 2 d / 2R ). [36] Can display nearly the entire sphere's surface on a finite circle. The sphere's full surface requires an infinite map.
Stereographic projection of a pole. The upper sphere is projected on a plane using the stereographic projection. Consider the (x,y) plane of the reference basis; its trace on the sphere is the equator of the sphere. We draw a line joining the South pole with the pole of interest P.
A gigantic and creepy eyeball projection has appeared in Las Vegas, thoroughly unsettling residents of the area. The Madison Square Garden (MSG) Sphere at the Venetian Resort in Las Vegas has LED ...
The stereographic projection is a homeomorphism between the unit sphere in with a single point removed and the set of all points in (a 2-dimensional plane). If G {\displaystyle G} is a topological group , its inversion map x ↦ x − 1 {\displaystyle x\mapsto x^{-1}} is a homeomorphism.