Search results
Results from the WOW.Com Content Network
A product of monic polynomials is monic. A product of polynomials is monic if and only if the product of the leading coefficients of the factors equals 1. This implies that, the monic polynomials in a univariate polynomial ring over a commutative ring form a monoid under polynomial multiplication.
Applied to the monic polynomial + = with all coefficients a k considered as free parameters, this means that every symmetric polynomial expression S(x 1,...,x n) in its roots can be expressed instead as a polynomial expression P(a 1,...,a n) in terms of its coefficients only, in other words without requiring knowledge of the roots.
The roots of the characteristic polynomial () are the eigenvalues of ().If there are n distinct eigenvalues , …,, then () is diagonalizable as () =, where D is the diagonal matrix and V is the Vandermonde matrix corresponding to the λ 's: = [], = [].
Over a field, every nonzero polynomial is associated to a unique monic polynomial. Given two polynomials, p and q, one says that p divides q, p is a divisor of q, or q is a multiple of p, if there is a polynomial r such that q = pr.
If x is an algebraic number then a n x is an algebraic integer, where x satisfies a polynomial p(x) with integer coefficients and where a n x n is the highest-degree term of p(x). The value y = a n x is an algebraic integer because it is a root of q(y) = a n − 1 n p(y /a n), where q(y) is a monic polynomial with integer coefficients.
In a similar way, If f and g are two polynomial arithmetic functions, one defines f * g, the Dirichlet convolution of f and g, by () = () = = () where the sum extends over all monic divisors d of m, or equivalently over all pairs (a, b) of monic polynomials whose product is m.
Given a quadratic polynomial of the form + + it is possible to factor out the coefficient a, and then complete the square for the resulting monic polynomial. Example: + + = [+ +] = [(+) +] = (+) + = (+) + This process of factoring out the coefficient a can further be simplified by only factorising it out of the first 2 terms.
The polynomial factors into linear factors over a field of order q. More precisely, this polynomial is the product of all monic polynomials of degree one over a field of order q. This implies that, if q = p n then X q − X is the product of all monic irreducible polynomials over GF(p), whose degree divides n.