enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Monic polynomial - Wikipedia

    en.wikipedia.org/wiki/Monic_polynomial

    A product of monic polynomials is monic. A product of polynomials is monic if and only if the product of the leading coefficients of the factors equals 1. This implies that, the monic polynomials in a univariate polynomial ring over a commutative ring form a monoid under polynomial multiplication.

  3. Newton's identities - Wikipedia

    en.wikipedia.org/wiki/Newton's_identities

    Applied to the monic polynomial + = with all coefficients a k considered as free parameters, this means that every symmetric polynomial expression S(x 1,...,x n) in its roots can be expressed instead as a polynomial expression P(a 1,...,a n) in terms of its coefficients only, in other words without requiring knowledge of the roots.

  4. Companion matrix - Wikipedia

    en.wikipedia.org/wiki/Companion_matrix

    The roots of the characteristic polynomial () are the eigenvalues of ().If there are n distinct eigenvalues , …,, then () is diagonalizable as () =, where D is the diagonal matrix and V is the Vandermonde matrix corresponding to the λ 's: = [], = [].

  5. Polynomial ring - Wikipedia

    en.wikipedia.org/wiki/Polynomial_ring

    Over a field, every nonzero polynomial is associated to a unique monic polynomial. Given two polynomials, p and q, one says that p divides q, p is a divisor of q, or q is a multiple of p, if there is a polynomial r such that q = pr.

  6. Algebraic integer - Wikipedia

    en.wikipedia.org/wiki/Algebraic_integer

    If x is an algebraic number then a n x is an algebraic integer, where x satisfies a polynomial p(x) with integer coefficients and where a n x n is the highest-degree term of p(x). The value y = a n x is an algebraic integer because it is a root of q(y) = a n − 1 n p(y /a n), where q(y) is a monic polynomial with integer coefficients.

  7. Average order of an arithmetic function - Wikipedia

    en.wikipedia.org/wiki/Average_order_of_an...

    In a similar way, If f and g are two polynomial arithmetic functions, one defines f * g, the Dirichlet convolution of f and g, by () = () = = () where the sum extends over all monic divisors d of m, or equivalently over all pairs (a, b) of monic polynomials whose product is m.

  8. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    Given a quadratic polynomial of the form + + it is possible to factor out the coefficient a, and then complete the square for the resulting monic polynomial. Example: + + = [+ +] = [(+) +] = (+) + = (+) + This process of factoring out the coefficient a can further be simplified by only factorising it out of the first 2 terms.

  9. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    The polynomial factors into linear factors over a field of order q. More precisely, this polynomial is the product of all monic polynomials of degree one over a field of order q. This implies that, if q = p n then X q − X is the product of all monic irreducible polynomials over GF(p), whose degree divides n.