enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    Although implicit in the development of calculus of the 17th and 18th centuries, the modern idea of the limit of a function goes back to Bolzano who, in 1817, introduced the basics of the epsilon-delta technique (see (ε, δ)-definition of limit below) to define continuous functions. However, his work was not known during his lifetime.

  3. Greek letters used in mathematics, science, and engineering

    en.wikipedia.org/wiki/Greek_letters_used_in...

    the Kronecker delta function [3] the Feigenbaum constants [4] the force of interest in mathematical finance; the Dirac delta function [5] the receptor which enkephalins have the highest affinity for in pharmacology [6] the Skorokhod integral in Malliavin calculus, a subfield of stochastic analysis; the minimum degree of any vertex in a given graph

  4. Nonstandard analysis - Wikipedia

    en.wikipedia.org/wiki/Nonstandard_analysis

    The standard way to resolve these debates is to define the operations of calculus using limits rather than infinitesimals. Nonstandard analysis [1] [2] [3] instead reformulates the calculus using a logically rigorous notion of infinitesimal numbers. Nonstandard analysis originated in the early 1960s by the mathematician Abraham Robinson. [4] [5 ...

  5. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    This is a list of limits for common functions such as elementary functions. In this article, the terms a, b and c are constants with respect to x.

  6. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    In mathematics, a limit is the value that a function (or sequence) approaches as the argument (or index) approaches some value. [1] Limits of functions are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals.

  7. Nonstandard calculus - Wikipedia

    en.wikipedia.org/wiki/Nonstandard_calculus

    Keisler's Elementary Calculus: An Infinitesimal Approach defines continuity on page 125 in terms of infinitesimals, to the exclusion of epsilon, delta methods. The derivative is defined on page 45 using infinitesimals rather than an epsilon-delta approach. The integral is defined on page 183 in terms of infinitesimals.

  8. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    The epsilondelta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces.

  9. Differential (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Differential_(mathematics)

    Despite the lack of rigor, immense progress was made in the 17th and 18th centuries. In the 19th century, Cauchy and others gradually developed the Epsilon, delta approach to continuity, limits and derivatives, giving a solid conceptual foundation for calculus.