Search results
Results from the WOW.Com Content Network
If a coordinate q i is not a Cartesian coordinate, the associated generalized momentum component p i does not necessarily have the dimensions of linear momentum. Even if q i is a Cartesian coordinate, p i will not be the same as the mechanical momentum if the potential depends on velocity. [6] Some sources represent the kinematic momentum by ...
The energy and momentum of an object measured in two inertial frames in energy–momentum space – the yellow frame measures E and p while the blue frame measures E ′ and p ′. The green arrow is the four-momentum P of an object with length proportional to its rest mass m 0 .
It can, however, form a wave packet centered on momentum k (with slight uncertainty), and centered on a certain position (with slight uncertainty). The center position of this wave packet changes as the wave propagates, moving through the crystal at the velocity v given by the formula above. In a real crystal, an electron moves in this way ...
This equation states that the kinetic energy (E k) is equal to the integral of the dot product of the momentum (p) of a body and the infinitesimal change of the velocity (v) of the body. It is assumed that the body starts with no kinetic energy when it is at rest (motionless).
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Internal forces between the particles that make up a body do not contribute to changing the momentum of the body as there is an equal and opposite force resulting in no net effect. [3] The linear momentum of a rigid body is the product of the mass of the body and the velocity of its center of mass v cm. [1] [4] [5]
Conservation of four-momentum gives p C μ = p A μ + p B μ, while the mass M of the heavier particle is given by −P C ⋅ P C = M 2 c 2. By measuring the energies and three-momenta of the daughter particles, one can reconstruct the invariant mass of the two-particle system, which must be equal to M.
Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point, right: extrinsic orbital angular momentum L about an axis, top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω) [6] bottom: momentum p and its radial position r from the axis.