enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regular Division of the Plane - Wikipedia

    en.wikipedia.org/wiki/Regular_Division_of_the_Plane

    Regular Division of the Plane III, woodcut, 1957 - 1958.. Regular Division of the Plane is a series of drawings by the Dutch artist M. C. Escher which began in 1936. These images are based on the principle of tessellation, irregular shapes or combinations of shapes that interlock completely to cover a surface or plane.

  3. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.

  4. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    Tessellation is used in manufacturing industry to reduce the wastage of material (yield losses) such as sheet metal when cutting out shapes for objects such as car doors or drink cans. [78] Tessellation is apparent in the mudcrack-like cracking of thin films [79] [80] – with a degree of self-organisation being observed using micro and ...

  5. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    The polytopes of rank 2 (2-polytopes) are called polygons.Regular polygons are equilateral and cyclic.A p-gonal regular polygon is represented by Schläfli symbol {p}.. Many sources only consider convex polygons, but star polygons, like the pentagram, when considered, can also be regular.

  6. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    The rhombic dodecahedron is a space-filling polyhedron, meaning it can be applied to tessellate three-dimensional space: it can be stacked to fill a space, much like hexagons fill a plane. It is a parallelohedron because it can be space-filling a honeycomb in which all of its copies meet face-to-face. [ 7 ]

  7. Penrose tiling - Wikipedia

    en.wikipedia.org/wiki/Penrose_tiling

    The original form of Penrose tiling used tiles of four different shapes, but this was later reduced to only two shapes: either two different rhombi, or two different quadrilaterals called kites and darts. The Penrose tilings are obtained by constraining the ways in which these shapes are allowed to fit together in a way that avoids periodic tiling.

  8. Isohedral figure - Wikipedia

    en.wikipedia.org/wiki/Isohedral_figure

    Similarly, a k-isohedral tiling has k separate symmetry orbits (it may contain m different face shapes, for m = k, or only for some m < k). [ 6 ] ("1-isohedral" is the same as "isohedral".) A monohedral polyhedron or monohedral tiling ( m = 1) has congruent faces, either directly or reflectively, which occur in one or more symmetry positions.

  9. Honeycomb (geometry) - Wikipedia

    en.wikipedia.org/wiki/Honeycomb_(geometry)

    Cubic honeycomb. In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps.It is an example of the more general mathematical tiling or tessellation in any number of dimensions.