Search results
Results from the WOW.Com Content Network
NumPy addresses the slowness problem partly by providing multidimensional arrays and functions and operators that operate efficiently on arrays; using these requires rewriting some code, mostly inner loops, using NumPy. Using NumPy in Python gives functionality comparable to MATLAB since they are both interpreted, [18] and they both allow the ...
NumPy, a BSD-licensed library that adds support for the manipulation of large, multi-dimensional arrays and matrices; it also includes a large collection of high-level mathematical functions. NumPy serves as the backbone for a number of other numerical libraries, notably SciPy. De facto standard for matrix/tensor operations in Python.
The below code demonstrates the pmap function's parallelization for matrix multiplication. # import pmap and random from JAX; import JAX NumPy from jax import pmap , random import jax.numpy as jnp # generate 2 random matrices of dimensions 5000 x 6000, one per device random_keys = random . split ( random .
Python [24] [25] with well-known scientific computing packages: NumPy, SymPy and SciPy. [26] [27] [28] R is a widely used system with a focus on data manipulation and statistics which implements the S language. [29] Many add-on packages are available (free software, GNU GPL license). SAS, [30] a system of software products for statistics.
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.
is how one would use Fortran to create arrays from the even and odd entries of an array. Another common use of vectorized indices is a filtering operation. Consider a clipping operation of a sine wave where amplitudes larger than 0.5 are to be set to 0.5. Using S-Lang, this can be done by y = sin(x); y[where(abs(y)>0.5)] = 0.5;
Array programming primitives concisely express broad ideas about data manipulation. The level of concision can be dramatic in certain cases: it is not uncommon [ example needed ] to find array programming language one-liners that require several pages of object-oriented code.
In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.