Search results
Results from the WOW.Com Content Network
8,388,608 bits (1,024 kibibytes), one of a few traditional meanings of megabyte: 10 7: 11,520,000 bits – capacity of a lower-resolution computer monitor (as of 2006), 800 × 600 pixels, 24 bpp: 11,796,480 bits – capacity of a 3.5 in floppy disk, colloquially known as 1.44 megabyte but actually 1.44 × 1000 × 1024 bytes 2 24: 16,777,216 ...
The ISQ symbols for the bit and byte are bit and B, respectively.In the context of data-rate units, one byte consists of 8 bits, and is synonymous with the unit octet.The abbreviation bps is often used to mean bit/s, so that when a 1 Mbps connection is advertised, it usually means that the maximum achievable bandwidth is 1 Mbit/s (one million bits per second), which is 0.125 MB/s (megabyte per ...
USB 2.0 High-Speed (interface signalling rate) 7.86×10 8 bit/s Computer data interfaces FireWire IEEE 1394b-2002 S800 9.5×10 8 bit/s Computer storage Harddrive read, Samsung SpinPoint F1 HD103Uj [7] 10 9: Gbit/s 1×10 9 bit/s Networking Gigabit Ethernet: 1.067×10 9 bit/s Computer data interfaces Parallel ATA UDMA 6; conventional PCI 32 bit ...
The term 'kilobyte' has traditionally been used to refer to 1024 bytes (2 10 B). [5] [6] [7] The usage of the metric prefix kilo for binary multiples arose as a convenience, because 1024 is approximately 1000.
For example, a kilobyte is actually 1024 bytes even though the standard meaning of kilo is 1000. And, mega normally means one million, but in computing is often used to mean 2 20 = 1 048 576 . The table below illustrates the differences between normal metric sizes and the implied actual size – the binary size.
An alternative system of nomenclature for the same units (referred to here as the customary convention), in which 1 kilobyte (KB) is equal to 1,024 bytes, [38] [39] [40] 1 megabyte (MB) is equal to 1024 2 bytes and 1 gigabyte (GB) is equal to 1024 3 bytes is mentioned by a 1990s JEDEC standard. Only the first three multiples (up to GB) are ...
The physical phenomena on which the device relies (such as spinning platters in a hard drive) will also impose limits; for instance, no spinning platter shipping in 2009 saturates SATA revision 2.0 (3 Gbit/s), so moving from this 3 Gbit/s interface to USB 3.0 at 4.8 Gbit/s for one spinning drive will result in no increase in realized transfer rate.
The difference between units based on decimal and binary prefixes increases as a semi-logarithmic (linear-log) function—for example, the decimal kilobyte value is nearly 98% of the kibibyte, a megabyte is under 96% of a mebibyte, and a gigabyte is just over 93% of a gibibyte value. This means that a 300 GB (279 GiB) hard disk might be ...