Search results
Results from the WOW.Com Content Network
If the shift in is expressed as a fraction of the period, and then scaled to an angle spanning a whole turn, one gets the phase shift, phase offset, or phase difference of relative to . If F {\displaystyle F} is a "canonical" function for a class of signals, like sin ( t ) {\displaystyle \sin(t)} is for all sinusoidal signals, then φ ...
The root mean square of the detrended data can be scaled by the square root of two to obtain an estimate of the sinusoid amplitude. A complex demodulation amplitude plot can be used to find a good starting value for the amplitude.
The linear combination, or harmonic addition, of sine and cosine waves is equivalent to a single sine wave with a phase shift and scaled amplitude, [33] [34] a cos x + b sin x = c cos ( x + φ ) {\displaystyle a\cos x+b\sin x=c\cos(x+\varphi )}
The aspect ratio of the resulting ellipse is a function of the phase shift between the input and output, with an aspect ratio of 1 (perfect circle) corresponding to a phase shift of ±90° and an aspect ratio of ∞ (a line) corresponding to a phase shift of 0° or 180°. [citation needed]
Tracing the y component of a circle while going around the circle results in a sine wave (red). Tracing the x component results in a cosine wave (blue). Both waves are sinusoids of the same frequency but different phases. A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic wave whose waveform (shape) is the trigonometric sine ...
The input sinusoidal voltage is usually defined to have zero phase, meaning that it is arbitrarily chosen as a convenient time reference. So the phase difference is attributed to the current function, e.g. sin(2 π ft + φ), whose orthogonal components are sin(2 π ft) cos(φ) and sin(2 π ft + π /2) sin(φ), as we have seen.
The same sinusoidal plane wave above can also be expressed in terms of sine instead of cosine using the elementary identity = (+ /) (,) = ((^) + ′) where ′ = + /.Thus the value and meaning of the phase shift depends on whether the wave is defined in terms of sine or co-sine.
Otherwise it is called unwrapped phase, which is a continuous function of argument t, assuming s a (t) is a continuous function of t. Unless otherwise indicated, the continuous form should be inferred. Instantaneous phase vs time. The function has two true discontinuities of 180° at times 21 and 59, indicative of amplitude zero-crossings.