Search results
Results from the WOW.Com Content Network
The chemical distinctions between metals and nonmetals is connected to the attractive force between the positive nuclear charge of an individual atom and its negatively charged outer electrons. From left to right across each period of the periodic table, the nuclear charge (number of protons in the atomic nucleus ) increases. [ 69 ]
An alternative in metallurgy is to consider various malleable alloys such as steel, aluminium alloys and similar as metals, and other materials as nonmetals; [20] fabricating metals is termed metalworking, [21] but there is no corresponding term for nonmetals. A loose definition such as this is often the common usage, but can also be inaccurate.
The chemical elements can be broadly divided into metals, metalloids, and nonmetals according to their shared physical and chemical properties.All elemental metals have a shiny appearance (at least when freshly polished); are good conductors of heat and electricity; form alloys with other metallic elements; and have at least one basic oxide.
A metalloid is a chemical element which has a preponderance of properties in between, or that are a mixture of, those of metals and nonmetals.The word metalloid comes from the Latin metallum ("metal") and the Greek oeides ("resembling in form or appearance"). [1]
The general science of metals is called metallurgy, a subtopic of materials science; aspects of the electronic and thermal properties are also within the scope of condensed matter physics and solid-state chemistry, it is a multidisciplinary topic.
Originally it was applied to the nonmetals which are solid at ordinary temperature. In or around 1917, the Missouri Board of Pharmacy wrote [34] that: A metal may be said to differ from a metalloid [that is, a nonmetal] in being an excellent conductor of heat and electricity, in reflecting light more or less powerfully and in being electropositive.
Periodic table of the chemical elements showing the most or more commonly named sets of elements (in periodic tables), and a traditional dividing line between metals and nonmetals. The f-block actually fits between groups 2 and 3; it is usually shown at the foot of the table to save horizontal space.
Electrolytic metal refining is particularly productive of selenium as a byproduct, obtained from the anode mud of copper refineries. Another source was the mud from the lead chambers of sulfuric acid plants, a process that is no longer used. Selenium can be refined from these muds by a number of methods.