Search results
Results from the WOW.Com Content Network
In mathematical analysis, the staircase paradox is a pathological example showing that limits of curves do not necessarily preserve their length. [1] It consists of a sequence of "staircase" polygonal chains in a unit square , formed from horizontal and vertical line segments of decreasing length, so that these staircases converge uniformly to ...
working on the design of a new picture, which featured a flight of stairs which only ever ascended or descended, depending on how you saw it. [The stairs] form a closed, circular construction, rather like a snake biting its own tail. And yet they can be drawn in correct perspective: each step higher (or lower) than the previous one.
The butterfly diagram show a data-flow diagram connecting the inputs x (left) to the outputs y that depend on them (right) for a "butterfly" step of a radix-2 Cooley–Tukey FFT algorithm. This diagram resembles a butterfly as in the Morpho butterfly shown for comparison, hence the name.
A staircase or stairway is one or more flights of stairs leading from one floor to another, and includes landings, newel posts, handrails, balustrades, and additional parts. [4] In buildings, stairs is a term applied to a complete flight of steps between two floors. A stair flight is a run of stairs or steps
A building's surface detailing, inside and outside, often includes decorative moulding, and these often contain ogee-shaped profiles—consisting (from low to high) of a concave arc flowing into a convex arc, with vertical ends; if the lower curve is convex and higher one concave, this is known as a Roman ogee, although frequently the terms are used interchangeably and for a variety of other ...
The commutative diagram used in the proof of the five lemma. In mathematics, and especially in category theory, a commutative diagram is a diagram such that all directed paths in the diagram with the same start and endpoints lead to the same result. [1] It is said that commutative diagrams play the role in category theory that equations play in ...
If J = −1 ← 0 → +1, then a diagram of type J (A ← B → C) is a span, and its colimit is a pushout. If one were to "forget" that the diagram had object B and the two arrows B → A , B → C , the resulting diagram would simply be the discrete category with the two objects A and C , and the colimit would simply be the binary coproduct.
In differential geometry, a ribbon (or strip) is the combination of a smooth space curve and its corresponding normal vector.More formally, a ribbon denoted by (,) includes a curve given by a three-dimensional vector (), depending continuously on the curve arc-length (), and a unit vector () perpendicular to () at each point. [1]