Search results
Results from the WOW.Com Content Network
In physics, sound energy is a form of energy that can be heard by living things. Only those waves that have a frequency of 16 Hz to 20 kHz are audible to humans. However, this range is an average and will slightly change from individual to individual.
When sound is moving through a medium that does not have constant physical properties, it may be refracted (either dispersed or focused). [5] Spherical compression (longitudinal) waves. The mechanical vibrations that can be interpreted as sound can travel through all forms of matter: gases, liquids, solids, and plasmas.
An acoustic wave is a mechanical wave that transmits energy through the movements of atoms and molecules. Acoustic waves transmit through fluids in a longitudinal manner (movement of particles are parallel to the direction of propagation of the wave); in contrast to electromagnetic waves that transmit in transverse manner (movement of particles at a right angle to the direction of propagation ...
Sound waves have two general characteristics: A disturbance is in some identifiable medium in which energy is transmitted from place to place, but the medium does not travel between two places. Important basic characteristics of waves are wavelength, amplitude, period, and frequency. Wavelength is the length of the repeating wave shape.
The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air, is about 343 m/s (1,125 ft/s; 1,235 km/h; 767 mph; 667 kn), or 1 km in 2.91 s or one mile in 4.69 s.
p is the acoustic pressure in the medium; ρ is the volumetric mass density of the medium; c is the speed of the sound waves traveling in the medium; δ is the particle displacement; x is the space variable along the direction of propagation of the sound waves. This equation is valid both for fluids and solids. In fluids, ρc 2 = K (K stands ...
A diffraction pattern of a red laser beam projected onto a plate after passing through a small circular aperture in another plate. Diffraction is the deviation of waves from straight-line propagation due to an obstacle or through an aperture. The diffracting object or aperture effectively becomes a secondary source of the propagating wave.
A seismic wave is a mechanical wave of acoustic energy that travels through the Earth or another planetary body. It can result from an earthquake (or generally, a quake ), volcanic eruption , magma movement, a large landslide and a large man-made explosion that produces low-frequency acoustic energy.