Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
Downloadable EXCEL program for the determination of the Most Probable Numbers (MPN), their standard deviations, confidence bounds and rarity values according to Jarvis, B., Wilrich, C., and P.-T. Wilrich: Reconsideration of the derivation of Most Probable Numbers, their standard deviations, confidence bounds and rarity values.
The (a,b,0) class of distributions is also known as the Panjer, [1] [2] the Poisson-type or the Katz family of distributions, [3] [4] and may be retrieved through the Conway–Maxwell–Poisson distribution. Only the Poisson, binomial and negative binomial distributions satisfy the full form of this
The shift geometric distribution is discrete compound Poisson distribution since it is a trivial case of negative binomial distribution. This distribution can model batch arrivals (such as in a bulk queue [5] [9]). The discrete compound Poisson distribution is also widely used in actuarial science for modelling the distribution of the total ...
In this case, is also Poisson distributed with expectation , so its variance must be . We can check this with the Blackwell-Girshick equation: N {\displaystyle N} has variance λ {\displaystyle \lambda } while each X i {\displaystyle X_{i}} has mean p {\displaystyle p} and variance p ( 1 − p ) {\displaystyle p(1-p)} , so we must have
In probability theory and statistics, a Hawkes process, named after Alan G. Hawkes, is a kind of self-exciting point process. [1] It has arrivals at times < < < < where the infinitesimal probability of an arrival during the time interval [, +) is
In mathematics, the Poisson formula, named after Siméon Denis Poisson, may refer to: Poisson distribution in probability; Poisson summation formula in Fourier analysis; Poisson kernel in complex or harmonic analysis; Poisson–Jensen formula in complex analysis
In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters.