enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    has a limit of +∞ as x → 0 +, ƒ(x) has the vertical asymptote x = 0, even though ƒ(0) = 5. The graph of this function does intersect the vertical asymptote once, at (0, 5). It is impossible for the graph of a function to intersect a vertical asymptote (or a vertical line in general) in more than one point.

  3. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    These two lines intersect at the center (origin) and are called asymptotes of the hyperbola = . [16] With the help of the second figure one can see that ( 1 ) {\displaystyle {\color {blue}{(1)}}} The perpendicular distance from a focus to either asymptote is b {\displaystyle b} (the semi-minor axis).

  4. Asymptotic curve - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_curve

    The asymptotic directions are the same as the asymptotes of the hyperbola of the Dupin indicatrix through a hyperbolic point, or the unique asymptote through a parabolic point. [1] An asymptotic direction is a direction along which the normal curvature is zero: take the plane spanned by the direction and the surface's normal at that point. The ...

  5. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    For example, the parent function = / has a horizontal and a vertical asymptote, and occupies the first and third quadrant, and all of its transformed forms have one horizontal and vertical asymptote, and occupies either the 1st and 3rd or 2nd and 4th quadrant.

  6. Unit hyperbola - Wikipedia

    en.wikipedia.org/wiki/Unit_hyperbola

    In this context the unit hyperbola is a calibration hyperbola [3] [4] Commonly in relativity study the hyperbola with vertical axis is taken as primary: The arrow of time goes from the bottom to top of the figure — a convention adopted by Richard Feynman in his famous diagrams. Space is represented by planes perpendicular to the time axis.

  7. Folium of Descartes - Wikipedia

    en.wikipedia.org/wiki/Folium_of_Descartes

    The folium of Descartes (green) with asymptote (blue) when = In geometry , the folium of Descartes (from Latin folium ' leaf '; named for René Descartes ) is an algebraic curve defined by the implicit equation x 3 + y 3 − 3 a x y = 0. {\displaystyle x^{3}+y^{3}-3axy=0.}

  8. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    More precisely, a simple root of ⁡ is either a critical value of such the corresponding critical point is a point which is not singular nor an inflection point, or the x-coordinate of an asymptote which is parallel to the y-axis and is tangent "at infinity" to an inflection point (inflexion asymptote).

  9. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    Instead, they can change concavity around vertical asymptotes or discontinuities. For example, the function x ↦ 1 x {\displaystyle x\mapsto {\frac {1}{x}}} is concave for negative x and convex for positive x , but it has no points of inflection because 0 is not in the domain of the function.