enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    A frequently cited example of uniform acceleration is that of an object in free fall in a uniform gravitational field. The acceleration of a falling body in the absence of resistances to motion is dependent only on the gravitational field strength g (also called acceleration due to gravity).

  3. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    This example neglects the effects of tire sliding, suspension dipping, real deflection of all ideally rigid mechanisms, etc. Another example of significant jerk, analogous to the first example, is the cutting of a rope with a particle on its end. Assume the particle is oscillating in a circular path with non-zero centripetal acceleration.

  4. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  5. List of common physics notations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_physics...

    acceleration: meter per second squared (m/s 2) magnetic flux density also called the magnetic field density or magnetic induction tesla (T), or equivalently, weber per square meter (Wb/m 2) capacitance: farad (F) heat capacity: joule per kelvin (J⋅K −1) constant of integration: varied depending on context

  6. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    Acceleration is the second derivative of displacement i.e. acceleration can be found by differentiating position with respect to time twice or differentiating velocity with respect to time once. [10] The SI unit of acceleration is m ⋅ s − 2 {\displaystyle \mathrm {m\cdot s^{-2}} } or metre per second squared .

  7. Inertial frame of reference - Wikipedia

    en.wikipedia.org/wiki/Inertial_frame_of_reference

    Examples of fictitious forces are the centrifugal force and the Coriolis force in rotating reference frames. To apply the Newtonian definition of an inertial frame, the understanding of separation between "fictitious" forces and "real" forces must be made clear. For example, consider a stationary object in an inertial frame.

  8. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    The formula for the acceleration A P can now be obtained as: = ˙ + + (), or = / + / +, where α is the angular acceleration vector obtained from the derivative of the angular velocity vector; / =, is the relative position vector (the position of P relative to the origin O of the moving frame M); and = ¨ is the acceleration of the origin of ...

  9. Metre per second squared - Wikipedia

    en.wikipedia.org/wiki/Metre_per_second_squared

    The average acceleration a can be calculated by dividing the speed v (m/s) by the time t (s), so the average acceleration in the first example would be calculated: = = = =. Related units [ edit ]