Search results
Results from the WOW.Com Content Network
Phenotypic screening is a type of screening used in biological research and drug discovery to identify substances such as small molecules, peptides, or RNAi that alter the phenotype of a cell or an organism in a desired manner. [1]
Though this study was generally underpowered, its results suggested the potential existence of new associations between multiple phenotypes, possibly due to a common underlying cause. This paper also coined the abbreviation "PheWAS". [10] As of 2019, PheWAS in the EHR has been conducted using ICD-9-CM, [11] ICD-10, and ICD-10-CM [12] diagnosis ...
The exact protocol for lentiviral production will vary depending on the research aim and applied library. [35] [43] [44] If a two vector-system is used, for example, cells are sequentially transduced with Cas9 and sgRNA in a two-step procedure. [35] [44] Although more complex, this has the advantage of a higher titre for the sgRNA library virus ...
Forward (classical) and reverse pharmacology approaches in drug discovery. In the field of drug discovery, classical pharmacology, [1] also known as forward pharmacology, [2] [3] [4] or phenotypic drug discovery (PDD), [5] relies on phenotypic screening (screening in intact cells or whole organisms) of chemical libraries of synthetic small molecules, natural products or extracts to identify ...
High-throughput phenotypic testing is increasingly important for exploring the biology of bacteria, fungi, yeasts, and animal cell lines such as human cancer cells.Just as DNA microarrays and proteomic technologies have made it possible to assay the expression level of thousands of genes or proteins all a once, phenotype microarrays (PMs) make it possible to quantitatively measure thousands of ...
CRISPR has the ability to create libraries of thousands of precise genetic mutations and can identify new tumors as well as validate older tumors in cancer research. Genome-scale CRISPR-Cas9 knockout (GeCKO) library targeting 18,080 genes with 64,751 unique guide sequences identify genes essential for cell viability in cancer.
High-content screening (HCS), also known as high-content analysis (HCA) or cellomics, is a method that is used in biological research and drug discovery to identify substances such as small molecules, peptides, or RNAi that alter the phenotype of a cell in a desired manner.
In this context, a phenotypic screen is usually employed to identify drugs with a desired effect in vitro, such as inhibition of viral plaque formation. If a drug produces a positive test, the next step is to determine whether it is acting on a known or novel target. Chemoproteomics is thus a follow-up to phenotypic screening.