enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Graph cuts in computer vision - Wikipedia

    en.wikipedia.org/wiki/Graph_cuts_in_computer_vision

    As applied in the field of computer vision, graph cut optimization can be employed to efficiently solve a wide variety of low-level computer vision problems (early vision [1]), such as image smoothing, the stereo correspondence problem, image segmentation, object co-segmentation, and many other computer vision problems that can be formulated in terms of energy minimization.

  3. Segmentation-based object categorization - Wikipedia

    en.wikipedia.org/wiki/Segmentation-based_object...

    For image segmentation, the matrix W is typically sparse, with a number of nonzero entries (), so such a matrix-vector product takes () time. For high-resolution images, the second eigenvalue is often ill-conditioned , leading to slow convergence of iterative eigenvalue solvers, such as the Lanczos algorithm .

  4. GrabCut - Wikipedia

    en.wikipedia.org/wiki/Grabcut

    GrabCut is an image segmentation method based on graph cuts.. Starting with a user-specified bounding box around the object to be segmented, the algorithm estimates the color distribution of the target object and that of the background using a Gaussian mixture model.

  5. Maximum subarray problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_subarray_problem

    Maximum subarray problems arise in many fields, such as genomic sequence analysis and computer vision.. Genomic sequence analysis employs maximum subarray algorithms to identify important biological segments of protein sequences that have unusual properties, by assigning scores to points within the sequence that are positive when a motif to be recognized is present, and negative when it is not ...

  6. Image segmentation - Wikipedia

    en.wikipedia.org/wiki/Image_segmentation

    In digital image processing and computer vision, image segmentation is the process of partitioning a digital image into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to ...

  7. Max-flow min-cut theorem - Wikipedia

    en.wikipedia.org/wiki/Max-flow_min-cut_theorem

    In the image segmentation problem, there are n pixels. Each pixel i can be assigned a foreground value f i or a background value b i. There is a penalty of p ij if pixels i, j are adjacent and have different assignments. The problem is to assign pixels to foreground or background such that the sum of their values minus the penalties is maximum.

  8. SqueezeNet - Wikipedia

    en.wikipedia.org/wiki/SqueezeNet

    Model compression (e.g. quantization and pruning of model parameters) can be applied to a deep neural network after it has been trained. [19] In the SqueezeNet paper, the authors demonstrated that a model compression technique called Deep Compression can be applied to SqueezeNet to further reduce the size of the parameter file from 5 MB to 500 ...

  9. Mean shift - Wikipedia

    en.wikipedia.org/wiki/Mean_shift

    where are the input samples and () is the kernel function (or Parzen window). is the only parameter in the algorithm and is called the bandwidth. This approach is known as kernel density estimation or the Parzen window technique. Once we have computed () from the equation above, we can find its local maxima using gradient ascent or some other optimization technique. The problem with this ...