Search results
Results from the WOW.Com Content Network
Excel graph of the difference between two evaluations of the smallest root of a quadratic: direct evaluation using the quadratic formula (accurate at smaller b) and an approximation for widely spaced roots (accurate for larger b). The difference reaches a minimum at the large dots, and round-off causes squiggles in the curves beyond this minimum.
The accuracy ratio (AR) is defined as the ratio of the area between the model CAP and random CAP, and the area between the perfect CAP and random CAP. [2] In a successful model, the AR has values between zero and one, and the higher the value is, the stronger the model. The cumulative number of positive outcomes indicates a model's strength.
The line at 45 degrees thus represents perfect equality of incomes. The Gini coefficient can then be thought of as the ratio of the area that lies between the line of equality and the Lorenz curve (marked A in the diagram) over the total area under the line of equality (marked A and B in the diagram); i.e., G = A/(A + B).
This curve is called the "line of perfect inequality." The Gini coefficient is the ratio of the area between the line of perfect equality and the observed Lorenz curve to the area between the line of perfect equality and the line of perfect inequality. The higher the coefficient, the more unequal the distribution is.
The blue area above the x-axis may be specified as positive area, while the yellow area below the x-axis is the negative area. The integral of a real function can be imagined as the signed area between the x {\displaystyle x} -axis and the curve y = f ( x ) {\displaystyle y=f(x)} over an interval [ a , b ].
Taking an example, the area under the curve y = x 2 over [0, 2] can be procedurally computed using Riemann's method. The interval [0, 2] is firstly divided into n subintervals, each of which is given a width of 2 n {\displaystyle {\tfrac {2}{n}}} ; these are the widths of the Riemann rectangles (hereafter "boxes").
Given the two red points, the blue line is the linear interpolant between the points, and the value y at x may be found by linear interpolation.. In mathematics, linear interpolation is a method of curve fitting using linear polynomials to construct new data points within the range of a discrete set of known data points.
A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.