Search results
Results from the WOW.Com Content Network
where m!! is the double factorial, ... (206 billion digits). The following Machin-like formulae were used for this: ... Super PI version 1.9 is available from Super ...
is the number of collisions made (in ideal conditions, perfectly elastic with no friction) by an object of mass m initially at rest between a fixed wall and another object of mass b 2N m, when struck by the other object. [1] (This gives the digits of π in base b up to N digits past the radix point.)
These are counted by the double factorial 15 = (6 − 1)‼. In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is,
The Chudnovsky algorithm is a fast method for calculating the digits of π, based on Ramanujan's π formulae.Published by the Chudnovsky brothers in 1988, [1] it was used to calculate π to a billion decimal places.
Start by setting [4] = = = + Then iterate + = + + = (+) + + = (+ +) + + + Then p k converges quadratically to π; that is, each iteration approximately doubles the number of correct digits.The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π 's final result.
The last 100 decimal digits of the latest world record computation are: [1] 7034341087 5351110672 0525610978 1945263024 9604509887 5683914937 4658179610 2004394122 9823988073 3622511852 Graph showing how the record precision of numerical approximations to pi measured in decimal places (depicted on a logarithmic scale), evolved in human history.
Later computers calculated pi to extraordinary numbers of digits (2.7 trillion as of August 2010), [4] and people began memorizing more and more of the output. The world record for the number of digits memorized has exploded since the mid-1990s, and it stood at 100,000 as of October 2006. [ 6 ]
Every sequence of digits, in any base, is the sequence of initial digits of some factorial number in that base. [ 60 ] Another result on divisibility of factorials, Wilson's theorem , states that ( n − 1 ) ! + 1 {\displaystyle (n-1)!+1} is divisible by n {\displaystyle n} if and only if n {\displaystyle n} is a prime number . [ 52 ]