Search results
Results from the WOW.Com Content Network
In the developing chordate (including vertebrates), the neural tube is the embryonic precursor to the central nervous system, which is made up of the brain and spinal cord. The neural groove gradually deepens as the neural folds become elevated, and ultimately the folds meet and coalesce in the middle line and convert the groove into the closed ...
Neurulation refers to the folding process in vertebrate embryos, which includes the transformation of the neural plate into the neural tube. [1] The embryo at this stage is termed the neurula . The process begins when the notochord induces the formation of the central nervous system (CNS) by signaling the ectoderm germ layer above it to form ...
The neural fold is a structure that arises during neurulation in the embryonic development of both birds and mammals among other organisms. [1] [2] This structure is associated with primary neurulation, meaning that it forms by the coming together of tissue layers, rather than a clustering, and subsequent hollowing out, of individual cells (known as secondary neurulation).
The neural tube has a longitudinal axis called the neuraxis, from the future brain area at the cranial end, to the conus medullaris of the spinal cord at the caudal end. By the fourth week in the human embryo, at its cranial end, three swellings have formed as primary brain vesicles. [1] These vesicles form the future forebrain, midbrain, and ...
Ventral to the neural tube is the chordamesoderm. Lateral to either side of the neural tube is the paraxial mesoderm, while the intermediate lateral region to the neural tube is the intermediate mesoderm. The fourth region is the lateral plate mesoderm, and the last region is the head mesenchym. [5]
The face and neck development of the human embryo refers to the development of the structures from the third to eighth week that give rise to the future head and neck.They consist of three layers, the ectoderm, mesoderm and endoderm, which form the mesenchyme (derived form the lateral plate mesoderm and paraxial mesoderm), neural crest and neural placodes (from the ectoderm). [1]
Related: 300 Trivia Questions and Answers to Jumpstart Your Fun Game Night. Ready for the answers? Scroll below this image (the image that represents your very appreciated patience!).
Neuroepithelial cells of the ectoderm begin multiplying rapidly and fold in forming the neural plate, which invaginates during the fourth week of embryonic growth and forms the neural tube. [2] The formation of the neural tube polarizes the neuroepithelial cells by orienting the apical side of the cell to face inward, which later becomes the ...