Search results
Results from the WOW.Com Content Network
An infimum of a set is always and only defined relative to a superset of the set in question. For example, there is no infimum of the positive real numbers inside the positive real numbers (as their own superset), nor any infimum of the positive real numbers inside the complex numbers with positive real part.
In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...
Exactly in the same way one defines the essential infimum as the supremum of the essential lower bound s, that is, = {: ({: <}) =} if the set of essential lower bounds is nonempty, and as otherwise; again there is an alternative expression as = {: ()} (with this being if the set is empty).
A real number x is called an upper bound for S if x ≥ s for all s ∈ S. A real number x is the least upper bound (or supremum) for S if x is an upper bound for S and x ≤ y for every upper bound y of S. The least-upper-bound property states that any non-empty set of real numbers that has an upper bound must have a least upper bound in real ...
For example, in lattice theory, one is interested in orders where all finite non-empty sets have both a least upper bound and a greatest lower bound. In domain theory, on the other hand, one focuses on partially ordered sets in which every directed subset has a supremum. Complete lattices and orders with a least element (the "empty supremum ...
In mathematics, the limit of a sequence of sets,, … (subsets of a common set ) is a set whose elements are determined by the sequence in either of two equivalent ways: (1) by upper and lower bounds on the sequence that converge monotonically to the same set (analogous to convergence of real-valued sequences) and (2) by convergence of a sequence of indicator functions which are themselves ...
Existence of an infimum of a subset of can fail if has no lower bound at all, or if the set of lower bounds does not contain a greatest element. However, if an infimum or supremum does exist, it is unique. (An example of this is the set {: <}. It has an upper bound, like 1.5, but no supremum.)
For example, the ancient Babylonians discovered a method for computing square roots of numbers. In contrast, the famed Archimedes constructed sequences of polygons, that inscribed and circumscribed a unit circle , in order to get a lower and upper bound for the circles circumference - which is the circle number Pi ( π {\displaystyle \pi } ).