Search results
Results from the WOW.Com Content Network
Pages in category "Articles with example Python (programming language) code" The following 200 pages are in this category, out of approximately 201 total. This list may not reflect recent changes .
An assignment operation is a process in imperative programming in which different values are associated with a particular variable name as time passes. [1] The program, in such model, operates by changing its state using successive assignment statements. [2] [3] Primitives of imperative programming languages rely on assignment to do iteration. [4]
Worked example of assigning tasks to an unequal number of workers using the Hungarian method. The assignment problem is a fundamental combinatorial optimization problem. In its most general form, the problem is as follows: The problem instance has a number of agents and a number of tasks.
Fair random assignment (also called probabilistic one-sided matching) is a kind of a fair division problem. In an assignment problem (also called house-allocation problem or one-sided matching ), there are m objects and they have to be allocated among n agents, such that each agent receives at most one object.
The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal–dual methods.It was developed and published in 1955 by Harold Kuhn, who gave it the name "Hungarian method" because the algorithm was largely based on the earlier works of two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry.
A solution is an assignment from items to bins. A feasible solution is a solution in which for each bin the total weight of assigned items is at most . The solution's profit is the sum of profits for each item-bin assignment. The goal is to find a maximum profit feasible solution.
The best problem instances for a basic model with a makespan objective are due to Taillard. [2] In the standard three-field notation for optimal job scheduling problems, the job-shop variant is denoted by J in the first field.
For the following definitions, two examples will be used. The first is the problem of character recognition given an array of bits encoding a binary-valued image. The other example is the problem of finding an interval that will correctly classify points within the interval as positive and the points outside of the range as negative.