Search results
Results from the WOW.Com Content Network
It models burst noise (also called popcorn noise or random telegraph signal). If the two possible values that a random variable can take are c 1 {\displaystyle c_{1}} and c 2 {\displaystyle c_{2}} , then the process can be described by the following master equations :
It is also called random telegraph noise (RTN), popcorn noise, impulse noise, bi-stable noise, or random telegraph signal (RTS) noise. It consists of sudden step-like transitions between two or more discrete voltage or current levels, as high as several hundred microvolts , at random and unpredictable times.
The broadcast signal can be either analogue (signal is varied continuously with respect to the information) or digital (information is encoded as a set of discrete values). [ 41 ] [ 83 ] The broadcast media industry is at a critical turning point in its development, with many countries moving from analogue to digital broadcasts.
The telegrapher's equations (or just telegraph equations) are a set of two coupled, linear equations that predict the voltage and current distributions on a linear electrical transmission line. The equations are important because they allow transmission lines to be analyzed using circuit theory . [ 1 ]
Wireless telegraphy or radiotelegraphy, commonly called CW (continuous wave), ICW (interrupted continuous wave) transmission, or on-off keying, and designated by the International Telecommunication Union as emission type A1A or A2A, is a radio communication method.
In contrast, truly random sequence sources, such as sequences generated by radioactive decay or by white noise, are infinite (no pre-determined end or cycle-period). However, as a result of this predictability, PRBS signals can be used as reproducible patterns (for example, signals used in testing telecommunications signal paths).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Beamforming is a signal processing techniques that produce summed array beams from a direction of interest – used basically in directional signal transmission or reception- the basic idea is to combine elements in a phased array such that some signals experience destructive inference and other experience constructive inference.