Search results
Results from the WOW.Com Content Network
Branch point in a polymer. Polymer architecture in polymer science relates to the way branching leads to a deviation from a strictly linear polymer chain. [1] Branching may occur randomly or reactions may be designed so that specific architectures are targeted. [1] It is an important microstructural feature.
A graft polymer molecule is a branched polymer molecule in which one or more of the side chains are different, structurally or configurationally, from the main chain. A star-shaped polymer molecule is a branched polymer molecule in which a single branch point gives rise to multiple linear chains or arms.
IUPAC definition for a crosslink in polymer chemistry In chemistry and biology , a cross-link is a bond or a short sequence of bonds that links one polymer chain to another. These links may take the form of covalent bonds or ionic bonds and the polymers can be either synthetic polymers or natural polymers (such as proteins ).
Linear topology is a special topological structure that exclusively has two nodes as the termini without any junction nodes. High-density polyethylene (HDPE) could be regarded as a linear polymer chain with very small amount of branching, the linear topology has been listed below: [9] Linear chains capable of forming intra-chain interactions can fold into a wide range of circuit topologies.
Polysaccharides are linear or branched chains of sugar carbohydrates; examples include starch, cellulose, and alginate. Other examples of biopolymers include natural rubbers (polymers of isoprene), suberin and lignin (complex polyphenolic polymers), cutin and cutan (complex polymers of long-chain fatty acids), melanin, and polyhydroxyalkanoates ...
Cross-linked polymers: Wide-meshed cross-linked polymers are elastomers and cannot be molten (unlike thermoplastics); heating cross-linked polymers only leads to decomposition. Thermoplastic elastomers , on the other hand, are reversibly "physically crosslinked" and can be molten.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The easiest way to visualize the mechanism of a step-growth polymerization is a group of people reaching out to hold their hands to form a human chain—each person has two hands (= reactive sites). There also is the possibility to have more than two reactive sites on a monomer: In this case branched polymers production take place.