Search results
Results from the WOW.Com Content Network
An adjoint equation is a linear differential equation, usually derived from its primal equation using integration by parts.Gradient values with respect to a particular quantity of interest can be efficiently calculated by solving the adjoint equation.
Adjoint endomorphism of a Lie algebra; Adjoint representation of a Lie group; Adjoint functors in category theory; Adjunction (field theory) Adjunction formula (algebraic geometry) Adjunction space in topology; Conjugate transpose of a matrix in linear algebra; Adjugate matrix, related to its inverse; Adjoint equation
An adjoint state equation is introduced, including a new unknown variable. The adjoint method formulates the gradient of a function towards its parameters in a constraint optimization form. By using the dual form of this constraint optimization problem, it can be used to calculate the gradient very fast.
In linear algebra, the adjugate or classical adjoint of a square matrix A, adj(A), is the transpose of its cofactor matrix. [ 1 ] [ 2 ] It is occasionally known as adjunct matrix , [ 3 ] [ 4 ] or "adjoint", [ 5 ] though that normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose .
The differential equation is said to be in Sturm–Liouville form or self-adjoint form.All second-order linear homogenous ordinary differential equations can be recast in the form on the left-hand side of by multiplying both sides of the equation by an appropriate integrating factor (although the same is not true of second-order partial differential equations, or if y is a vector).
In mathematics, specifically in operator theory, each linear operator on an inner product space defines a Hermitian adjoint (or adjoint) operator on that space according to the rule A x , y = x , A ∗ y , {\displaystyle \langle Ax,y\rangle =\langle x,A^{*}y\rangle ,}
One of Fredholm's theorems, closely related to the Fredholm alternative, concerns the existence of solutions to the inhomogeneous Fredholm equation (,) = ().Solutions to this equation exist if and only if the function () is orthogonal to the complete set of solutions {()} of the corresponding homogeneous adjoint equation:
The conjugate transpose "adjoint" matrix should not be confused with the adjugate, (), which is also sometimes called adjoint. The conjugate transpose of a matrix A {\displaystyle \mathbf {A} } with real entries reduces to the transpose of A {\displaystyle \mathbf {A} } , as the conjugate of a real number is the number itself.