Search results
Results from the WOW.Com Content Network
The master theorem always yields asymptotically tight bounds to recurrences from divide and conquer algorithms that partition an input into smaller subproblems of equal sizes, solve the subproblems recursively, and then combine the subproblem solutions to give a solution to the original problem. The time for such an algorithm can be expressed ...
In computer science, the Akra–Bazzi method, or Akra–Bazzi theorem, is used to analyze the asymptotic behavior of the mathematical recurrences that appear in the analysis of divide and conquer algorithms where the sub-problems have substantially different sizes.
In mathematics, a theorem that covers a variety of cases is sometimes called a master theorem. Some theorems called master theorems in their fields include: Master theorem (analysis of algorithms), analyzing the asymptotic behavior of divide-and-conquer algorithms; Ramanujan's master theorem, providing an analytic expression for the Mellin ...
For this recurrence relation, the master theorem for divide-and-conquer recurrences gives the asymptotic bound () = (). It follows that, for sufficiently large n , Karatsuba's algorithm will perform fewer shifts and single-digit additions than longhand multiplication, even though its basic step uses more additions and shifts than the ...
For looking up a given entry in a given ordered list, both the binary and the linear search algorithm (which ignores ordering) can be used. The analysis of the former and the latter algorithm shows that it takes at most log 2 n and n check steps, respectively, for a list of size n.
In computer science, divide and conquer is an algorithm design paradigm.A divide-and-conquer algorithm recursively breaks down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly.
Saxe is known for his highly-cited publications on automated theorem proving, circuit complexity, retiming in synchronous circuit design, computer networks, and static program analysis. [FLL] His work on program analysis from PLDI 2002 won the Most Influential PLDI Paper Award for 2012. [ 2 ]
He explained the title as follows: "a Master Theorem from the masterly and rapid fashion in which it deals with various questions otherwise troublesome to solve." The result was re-derived (with attribution) a number of times, most notably by I. J. Good who derived it from his multilinear generalization of the Lagrange inversion theorem .