Search results
Results from the WOW.Com Content Network
The master theorem always yields asymptotically tight bounds to recurrences from divide and conquer algorithms that partition an input into smaller subproblems of equal sizes, solve the subproblems recursively, and then combine the subproblem solutions to give a solution to the original problem. The time for such an algorithm can be expressed ...
In computer science, the Akra–Bazzi method, or Akra–Bazzi theorem, is used to analyze the asymptotic behavior of the mathematical recurrences that appear in the analysis of divide and conquer algorithms where the sub-problems have substantially different sizes.
The generating function of the Bernoulli polynomials is given by: = = ()! These polynomials are given in terms of the Hurwitz zeta function: (,) = = (+)by (,) = for .Using the Ramanujan master theorem and the generating function of Bernoulli polynomials one has the following integral representation: [6]
Master theorem (analysis of algorithms), analyzing the asymptotic behavior of divide-and-conquer algorithms; Ramanujan's master theorem, providing an analytic expression for the Mellin transform of an analytic function; MacMahon master theorem (MMT), in enumerative combinatorics and linear algebra; Glasser's master theorem in integral calculus
Structured program theorem (computer science) Sturm's theorem (theory of equations) Sturm–Picone comparison theorem (differential equations) Subspace theorem (Diophantine approximation) Supersymmetry nonrenormalization theorems ; Supporting hyperplane theorem (convex geometry) Swan's theorem (module theory) Sylow theorems (group theory)
For this recurrence relation, the master theorem for divide-and-conquer recurrences gives the asymptotic bound () = (). It follows that, for sufficiently large n , Karatsuba's algorithm will perform fewer shifts and single-digit additions than longhand multiplication, even though its basic step uses more additions and shifts than the ...
Percy MacMahon was born in Malta to a British military family. His father was a colonel at the time, retired in the rank of the brigadier. [1] MacMahon attended the Proprietary School in Cheltenham. At the age of 14 he won a Junior Scholarship to Cheltenham College, which he attended as a day boy from 10 February 1868 until December 1870.
D. Foata and G.-N. Han, A new proof of the Garoufalidis-Lê-Zeilberger Quantum MacMahon Master Theorem, Journal of Algebra 307 (2007), no. 1, 424–431 . D. Foata and G.-N. Han, Specializations and extensions of the quantum MacMahon Master Theorem, Linear Algebra and its Applications 423 (2007), no. 2–3, 445–455 .