enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group. The group has an identity: Rot(0). Every rotation Rot(φ) has an inverse Rot(−φ). Every reflection Ref(θ) is its own inverse. Composition has closure and is ...

  3. Point groups in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_two_dimensions

    The symmetry group of a square belongs to the family of dihedral groups, D n (abstract group type Dih n), including as many reflections as rotations. The infinite rotational symmetry of the circle implies reflection symmetry as well, but formally the circle group S 1 is distinct from Dih(S 1) because the latter explicitly includes the reflections.

  4. Transformation geometry - Wikipedia

    en.wikipedia.org/wiki/Transformation_geometry

    An exploration of transformation geometry often begins with a study of reflection symmetry as found in daily life. The first real transformation is reflection in a line or reflection against an axis. The composition of two reflections results in a rotation when the lines intersect, or a translation when they are parallel.

  5. Reflection symmetry - Wikipedia

    en.wikipedia.org/wiki/Reflection_symmetry

    In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2-dimensional space, there is a line/axis of symmetry, in 3-dimensional space, there is a plane of symmetry

  6. Symmetry (geometry) - Wikipedia

    en.wikipedia.org/wiki/Symmetry_(geometry)

    A drawing of a butterfly with bilateral symmetry, with left and right sides as mirror images of each other.. In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). [1]

  7. Motion (geometry) - Wikipedia

    en.wikipedia.org/wiki/Motion_(geometry)

    In geometry, a motion is an isometry of a metric space. For instance, a plane equipped with the Euclidean distance metric is a metric space in which a mapping associating congruent figures is a motion. [1] More generally, the term motion is a synonym for surjective isometry in metric geometry, [2] including elliptic geometry and hyperbolic ...

  8. Rotational symmetry - Wikipedia

    en.wikipedia.org/wiki/Rotational_symmetry

    Rotational symmetry, also known as radial symmetry in geometry, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which it looks exactly the same for each rotation.

  9. Symmetry (physics) - Wikipedia

    en.wikipedia.org/wiki/Symmetry_(physics)

    The above ideas lead to the useful idea of invariance when discussing observed physical symmetry; this can be applied to symmetries in forces as well.. For example, an electric field due to an electrically charged wire of infinite length is said to exhibit cylindrical symmetry, because the electric field strength at a given distance r from the wire will have the same magnitude at each point on ...