Search results
Results from the WOW.Com Content Network
A control system includes control surfaces which, when deflected, generate a moment (or couple from ailerons) about the cg which rotates the aircraft in pitch, roll, and yaw. For example, a pitching moment comes from a force applied at a distance forward or aft of the cg, causing the aircraft to pitch up or down.
The position of all three axes, with the right-hand rule for describing the angle of its rotations. An aircraft in flight is free to rotate in three dimensions: yaw, nose left or right about an axis running up and down; pitch, nose up or down about an axis running from wing to wing; and roll, rotation about an axis running from nose to tail.
Tilting side to side on the X-axis. Tilting forward and backward on the Y-axis. Turning left and right on the Z-axis. In terms of a headset, such as the kind used for virtual reality, rotational envelopes can also be thought of in the following terms: Pitch: Nodding "yes" Yaw: Shaking "no" Roll: Bobbling from side to side
For example, a pitching moment is a vertical force applied at a distance forward or aft from the center of gravity of the aircraft, causing the aircraft to pitch up or down. Roll, pitch and yaw refer, in this context, to rotations about the respective axes starting from a defined equilibrium state.
All the axes run through the center of gravity (called the "CG"): "X" or "x" axis runs from back to front along the body, called the Roll Axis. "Y" or "y" axis runs left to right along the wing, called the Pitch Axis. "Z" or "z" runs from top to bottom, called the Yaw Axis.
A yaw rotation is a movement around the yaw axis of a rigid body that changes the direction it is pointing, to the left or right of its direction of motion. The yaw rate or yaw velocity of a car, aircraft, projectile or other rigid body is the angular velocity of this rotation, or rate of change of the heading angle when the aircraft is horizontal.
If the Dutch roll is very lightly damped or unstable, the yaw damper becomes a safety requirement, rather than a pilot and passenger convenience. Dual yaw dampers are required and a failed yaw damper is cause for limiting flight to low altitudes, and possibly lower Mach numbers, where the Dutch roll stability is improved.
For positive y- and z-axis, we have to face two different conventions: In case of land vehicles like cars, tanks etc., which use the ENU-system (East-North-Up) as external reference (World frame), the vehicle's (body's) positive y- or pitch axis always points to its left, and the positive z- or yaw axis always points up. World frame's origin is ...