enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...

  3. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    Thus, the infimum or meet of a collection of subsets is the greatest lower bound while the supremum or join is the least upper bound. In this context, the inner limit, lim inf X n, is the largest meeting of tails of the sequence, and the outer limit, lim sup X n, is the smallest joining of tails of the sequence. The following makes this precise.

  4. Limit-preserving function (order theory) - Wikipedia

    en.wikipedia.org/wiki/Limit-preserving_function...

    In many specialized areas of order theory, one restricts to classes of partially ordered sets that are complete with respect to certain limit constructions. For example, in lattice theory, one is interested in orders where all finite non-empty sets have both a least upper bound and a greatest lower bound.

  5. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    Likewise, a greatest element of a partially ordered set (poset) is an upper bound of the set which is contained within the set, whereas a maximal element m of a poset A is an element of A such that if m ≤ b (for any b in A), then m = b. Any least element or greatest element of a poset is unique, but a poset can have several minimal or maximal ...

  6. Completeness (order theory) - Wikipedia

    en.wikipedia.org/wiki/Completeness_(order_theory)

    Indeed, for any subset X of a poset, one can consider its set of lower bounds B. The supremum of B is then equal to the infimum of X: since each element of X is an upper bound of B, sup B is smaller than all elements of X, i.e. sup B is in B. It is the greatest element of B and hence the infimum of X. In a dual way, the existence of all infima ...

  7. Join and meet - Wikipedia

    en.wikipedia.org/wiki/Join_and_meet

    If (,) is a partially ordered set, such that each pair of elements in has a meet, then indeed = if and only if , since in the latter case indeed is a lower bound of , and since is the greatest lower bound if and only if it is a lower bound. Thus, the partial order defined by the meet in the universal algebra approach coincides with the original ...

  8. Complete lattice - Wikipedia

    en.wikipedia.org/wiki/Complete_lattice

    The least element of this lattice is the number 1 since it divides any other number. Perhaps surprisingly, the greatest element is 0, because it can be divided by any other number. The supremum of finite sets is given by the least common multiple and the infimum by the greatest common divisor. For infinite sets, the supremum will always be 0 ...

  9. Limits of integration - Wikipedia

    en.wikipedia.org/wiki/Limits_of_integration

    In calculus and mathematical analysis the limits of integration (or bounds of integration) of the integral () of a Riemann integrable function f {\displaystyle f} defined on a closed and bounded interval are the real numbers a {\displaystyle a} and b {\displaystyle b} , in which a {\displaystyle a} is called the lower limit and b {\displaystyle ...