Search results
Results from the WOW.Com Content Network
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
How much gas is present could be specified by giving the mass instead of the chemical amount of gas. Therefore, an alternative form of the ideal gas law may be useful. The chemical amount, n (in moles), is equal to total mass of the gas (m) (in kilograms) divided by the molar mass, M (in kilograms per mole): =.
Manganese(II) chloride is the dichloride salt of manganese, MnCl 2.This inorganic chemical exists in the anhydrous form, as well as the dihydrate (MnCl 2 ·2H 2 O) and tetrahydrate (MnCl 2 ·4H 2 O), with the tetrahydrate being the most common form.
Specific volume is commonly applied to: Molar volume; Volume (thermodynamics) Partial molar volume; Imagine a variable-volume, airtight chamber containing a certain number of atoms of oxygen gas. Consider the following four examples: If the chamber is made smaller without allowing gas in or out, the density increases and the specific volume ...
The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.
Ideal gas law: p = pressure; V ... M m = molar mass ... where k B is the Boltzmann constant, and Ω denotes the volume of macrostate in the phase space or otherwise ...
The properties of molar internal energy and entropy —defined by the first and second laws of thermodynamics, hence all thermodynamic properties of a simple compressible substance—can be specified, up to a constant of integration, by two measurable functions: a mechanical equation of state = (,), and a constant volume specific heat (,).
The law is a specific case of the ideal gas law. A modern statement is: Avogadro's law states that "equal volumes of all gases, at the same temperature and pressure, have the same number of molecules." [1] For a given mass of an ideal gas, the volume and amount (moles) of the gas are directly proportional if the temperature and pressure are ...