Search results
Results from the WOW.Com Content Network
The Makridakis Competitions (also known as the M Competitions or M-Competitions) are a series of open competitions to evaluate and compare the accuracy of different time series forecasting methods. They are organized by teams led by forecasting researcher Spyros Makridakis and were first held in 1982. [1] [2] [3] [4]
Kaggle is a data science competition platform and online community for data scientists and machine learning practitioners under Google LLC.Kaggle enables users to find and publish datasets, explore and build models in a web-based data science environment, work with other data scientists and machine learning engineers, and enter competitions to solve data science challenges.
There are several ways to represent the forecast density depending on the shape of the forecasting distribution. If the forecast density is symmetric ( normal or Student's t , for instance), the fan centers at the mean (which coincides with the mode and median ) forecast, and the ranges expand like confidence intervals by adding and subtracting ...
Predictive analytics is often defined as predicting at a more detailed level of granularity, i.e., generating predictive scores (probabilities) for each individual organizational element. This distinguishes it from forecasting. For example, "Predictive analytics—Technology that learns from experience (data) to predict the future behavior of ...
In weather forecasting, model output statistics (MOS) is a multiple linear regression technique in which predictands, often near-surface quantities (such as two-meter-above-ground-level air temperature, horizontal visibility, and wind direction, speed and gusts), are related statistically to one or more predictors.
The original model uses an iterative three-stage modeling approach: Model identification and model selection: making sure that the variables are stationary, identifying seasonality in the dependent series (seasonally differencing it if necessary), and using plots of the autocorrelation (ACF) and partial autocorrelation (PACF) functions of the dependent time series to decide which (if any ...
The Global Energy Forecasting Competition (GEFCom) is a competition conducted by a team led by Dr. Tao Hong that invites submissions around the world for forecasting energy demand. [1] GEFCom was first held in 2012 on Kaggle , [ 2 ] and the second GEFCom was held in 2014 on CrowdANALYTIX.
Extension packages contain related and extended functionality: package tseries includes the function arma(), documented in "Fit ARMA Models to Time Series"; packagefracdiff contains fracdiff() for fractionally integrated ARMA processes; and package forecast includes auto.arima for selecting a parsimonious set of p, q.